期刊文献+

Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production

下载PDF
导出
摘要 Constructing efficient carbon material with enhanced mass transfer ability from vacuum residuum(VR)is of prime industrial and scientific significance.Herein,we demonstrated a one-pot synthesis of metal-free and highly symmetric hollow carbon cubes(HCCs)using cost-efficient vacuum residuum(VR)as a C/N/S source.By multi-techniques such as TEM,SEM,Raman,XPS,and XRD,it is found that the CTAB surfactant plays an important role in emulsifying and forming oil-in-water suspension particles.Subsequently,high aromatics contents in VR favor the formation of HCCs shell by graphitization on the surface of Na Cl template.Notably,heavy metals(e.g.,V,Ni)are not enriched in carbon skeleton due to the unique graphitization mechanism.This metal-free HCCs catalyst showed good catalytic stability and high selectivity towards direct and local electrochemical production of hydrogen peroxide(H_(2)O_(2))through two-electron O_(2)reduction due to enhanced mass transfer ability.The results provide a novel avenue to synthesize metal-free cubic carbon material from low-cost and plentiful VR,which are essential to the design of more efficient catalysts for O_(2)reduction to H_(2)O_(2).
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期98-105,共8页 中国化学工程学报(英文版)
基金 supported by the National Natural Science Foundation of China (21978325)。
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部