期刊文献+

阈值引导采样法的船舶轨迹简化算法 被引量:1

A Ship Trajectory Simplified Algorithm Based on Threshold Guiding Sampling Method
下载PDF
导出
摘要 为了解决大多数的轨迹简化算法缺乏对轨迹多个特征的综合衡量的问题,提出了一种融合位置、方向、速度与时序等多个轨迹特征,基于阈值引导采样的船舶轨迹简化算法。该算法以角度阈值法思想为基础,计算轨迹点的前后多个特征差,与设置的阈值进行对比,进而实现对轨迹的简化。利用船舶AIS轨迹数据对该算法进行轨迹简化和轨迹聚类实验。实验结果表明,该轨迹简化算法在简化率、简化误差率上均优于角度阈值算法,能保留原始轨迹的形状,并且简化后的轨迹数据能运用于轨迹聚类,聚类效果良好。 In order to solve the lack of comprehensive measurement of multiple features of trajectory in most simplified algorithms,we propose a trajectory simplification algorithm which is based on the angle threshold algorithm and takes into account multiple trajectory features such as position,direction,speed and time sequence.The proposed algorithm calculates the differences between features of the successive trajectory points and compares them with the set thresholds to simplify the trajectories.Using ship s AIS trajectory data,trajectory simplification and trajectory clustering are performed on the proposed algorithm.The results of the experiments show that the proposed algorithm is superior to the angle threshold algorithm in terms of simplification rate and simplification error rate.The results also show that it can retain the shape of the original trajectory and the simplified trajectory can effectively be used for trajectory clustering.
作者 张银昊 潘家财 赵梦鸽 ZHANG Yinhao;PAN Jiacai;ZHAO Mengge(Navigation College,Jimei University,Xiamen 361021,China)
出处 《集美大学学报(自然科学版)》 CAS 2021年第5期425-432,共8页 Journal of Jimei University:Natural Science
关键词 船舶轨迹 简化算法 阈值引导采样法 船舶自动识别系统 移动对象 ship trajectory simplification algorithm threshold guide sampling algorithm ship automatic identification system moving object
  • 相关文献

参考文献11

二级参考文献37

  • 1纪贤标,邵哲平,潘家财,孙腾达.AIS信息分布式采集系统的开发及关键技术[J].上海海事大学学报,2007,28(1):28-31. 被引量:17
  • 2童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报,2007,36(2):210-217. 被引量:78
  • 3邵哲平,孙腾达,潘家财,纪贤标.基于ECDIS和AIS的船舶综合信息服务系统的开发[J].中国航海,2007,30(2):30-33. 被引量:33
  • 4[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000. 被引量:1
  • 5[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998. 被引量:1
  • 6[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231. 被引量:1
  • 7[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20. 被引量:1
  • 8吴兆麟,朱军编著.海上交通丁程(第二版)[M].大连:大连海事大学出版社,2004. 被引量:1
  • 9国际海事组织.通用船载自动识别系统国际标准汇编[G].袁安存,张淑芳编译.大连:大连海事大学出版社,2005. 被引量:4
  • 10Shao Zheping, Sun Teng da, Pan Jiacai, Ji Xianbiao. Vessel information service system based on ECDIS and AIS[C]. Proceedings of ICTE 2007 ,ASCE, 1678- 1683. 被引量:1

共引文献201

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部