摘要
随着地质研究与大数据的融合,形成了"多元异构、高容量、低价值密度的"海量地质数据.尤其在城市建设中反映地表和地面沉降情况的地质形变监测数据,具有容量大、时变性、维度复杂的特点.如何通过可视化技术更直观的服务于地质研究分析与问题决策,成为该领域数据可视化研究与应用热点.本文针对这一问题,通过干涉合成孔径雷达(Interferomeric Synthetic Aperture Radar, InSAR)采集的数据,提出一种在Cesium和Geoserver融合构建的Web三维场景下,展示地域沉降形变监测情况的可视化方法.在形变图层展示效果上,不同于Google Earth单一的渲染效果,设计出一种动态改变形变监测点云数据过渡颜色的方式.在可视化分析交互上与ENVI/SARscape进行对比.实践及应用结果表明,相对于传统方法如二维平面展示以及通过Google Earth导入数据的集成展示,本文方法对形变监测结果有更加直观的展示.同时拥有更加丰富的人机交互方式,为地质专业者提供更良好的辅助决策功能.
With the integration of geological research and big data, massive geological data with "multiple heterogeneity,high capacity and low value density" has been formed. Especially in urban construction, the monitoring data of geological deformation which reflects the ground surface and land subsidence features large capacity, time-varying property and complex dimensions. How to use visualization techniques to serve geological research analysis and problem decision more intuitively has become a hot spot of data visualization research and application in the field. To solve the problem,this paper presents a visualization method to display the monitoring situation of regional subsidence deformation under the Web three-dimensional scene constructed by the fusion of Cesium and GeoServer with the data collected by Interferometric Synthetic Aperture Radar(InSAR). Regarding the effect of deformation layer display, we create a way to dynamically change the transition color of the point cloud data from deformation monitoring, which is different from the single rendering effect of Google Earth. It is compared with ENVI/SARscape in terms of visual analysis interaction. The results of practice and application show that, in comparison with traditional methods such as two-dimensional display and integrated display of data imported from Google Earth, the proposed method can display deformation monitoring results more intuitively. In addition, it has more abundant man-machine interaction modes, which thus provides a better auxiliary decision-making function for geological professionals.
作者
杨明奇
周程
付立军
王宏君
安梦良
YANG Ming-Qi;ZHOU Cheng;FU Li-Jun;WANG Hong-Jun;AN Meng-Liang(University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China;Jsti Group,Nanjing 210017,China)
出处
《计算机系统应用》
2021年第11期179-187,共9页
Computer Systems & Applications
基金
国家重点研发计划(2018YFC1505501)。