期刊文献+

基于SSA-VMD的滚动轴承故障诊断技术 被引量:4

Fault Diagnosis Technology for Rolling Bearings Based on SSA-VMD
下载PDF
导出
摘要 采用SSA-VMD算法对滚动轴承振动信号进行去噪处理,并用主成分分析法(PCA)对故障信号做进一步降维处理,最后用支持向量机(SVM)训练分类模型。用测试集进行故障诊断实验,结果表明:SSA-VMD算法能够有效诊断滚动轴承的故障类型,准确率高达96.25%。 In this paper,the SSA-VMD algorithm was used to denoise bearing’s vibration signals,including having the principal component analysis(PCA)employed to further reduce the dimension of the fault signals and the support vector machine(SVM)adopted to train classification model,as well as the test set used for fault diagnosis experiment.Experimental results show that,this method can effectively diagnose various faults in rolling bearings and the accuracy rate can be 96.25%.
作者 刘均 赵喜民 程增喜 LIU Jun;ZHAO Xi-min;CHENG Zeng-xi(School of Electrical Engineering&Information,Northeast Petroleum University;China Resources Power(Xuzhou)Co.,Ltd.)
出处 《化工自动化及仪表》 CAS 2021年第6期630-633,共4页 Control and Instruments in Chemical Industry
关键词 故障诊断 滚动轴承 振动信号 SSA-VMD算法 fault diagnosis rolling bearing vibration signal SSA-VMD algorithm
  • 相关文献

参考文献3

二级参考文献12

共引文献46

同被引文献45

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部