期刊文献+

基于机器视觉的建筑垃圾填料物质组分图像分析方法 被引量:1

Image Analysis Method of Construction Waste Filler Material Components Based on Machine Vision
下载PDF
导出
摘要 建筑垃圾再生填料是从建筑垃圾中经过粉碎而获得的,其组成成分具有多样性,需经过分拣等处理后才可用于路基填筑。目前多采用耗时的人工筛选法进行获取。本文利用卷积神经网络进行图像分析,可以自动实时地获取再生填料组成。首先创建一个由36000张颗粒图像组成的带标签数据集,对不同CNN模型进行训练。其中,使用40%的Dropout比率自定义ResNet34模型表现最优,其验证精度可达97%;其次基于所识别的颗粒类别与颗粒形状估计颗粒的质量;最后将本文提出的方法与人工筛选法进行了比较,对于大多数再生填料质量差异低于2%。本文旨在提高建筑垃圾利用空间,对建筑垃圾回填路基工程的推广应用具有重要意义。 Construction waste recycling filler is obtained from construction waste by crushing.Due to its diversified composition,It can be used for subgrade filling only after sorting.At present,manual screening method is time-consuming.In this paper,convolution neural network was used for image analysis and the composition of regenerated packing can be obtained automatically.Firstly,a labeled dataset composed of 36000 granular images is created to train different CNN models.Among them,the user-defined resnet34 model with 40% Dropout rate performs the best,and its verification accuracy can reach 97%.Secondly,the mass of particles was estimated based on the particle type and shape.Finally,the method proposed in this paper was compared with the manual screening method.For most recycled fillers,the quality difference is less than 2%.This paper aims to improve the utilization of construction waste and it is of great significance to the popularization and application of construction waste backfill subgrade engineering.
作者 谢康 陈晓斌 尧俊凯 苏谦 陈龙 吴梦黎 XIE Kang;CHEN Xiaobin;YAO Junkai;SU Qian;CHEN Long;WU Mengli(School of Civil Engineering,Central South University,Changsha 410083,Hunan,China;China Academy of Railway Sciences,Beijing 100081,China;School of Civil Engineering,Southwest Jiaotong University,Chengdu 610000,Sichuan,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第10期50-58,69,共10页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51978674)。
关键词 建筑垃圾 再生填料 卷积神经网络 深度学习 图像识别 construction waste recycled filler convolutional neuron network deep learning image identification
  • 相关文献

参考文献15

二级参考文献122

共引文献281

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部