期刊文献+

基于深度残差网络的小样本杯沿缺陷检测 被引量:4

Defect detection of small scale soft-packaging cup edgebased on deep residual network
下载PDF
导出
摘要 目的:为解决软包装产品在出厂检测时速度慢、效率低、误检率高、标准不统一等问题。方法:通过数据预处理和迁移学习,使用ResNet50网络模型框架,对软包装杯沿缺陷检测进行了实验和分析。首先对小样本数据集进行预处理,其次采用迁移学习的方法,将特征提取能力较强的参数引入本地模型,再针对杯沿数据集重新训练提高模型分类精度。结果:在小规模软包装杯沿图像集上神经网络模型准确率可达97.69%。结论:由此可见,该实验设计对解决食品软包装杯沿缺陷分类问题有效。 Aims:This paper aims to solve the problems of slow speed,low efficiency,high false detection rate and non-uniform standard in the ex-factory testing of soft packaging products.Methods:The ResNet50 network models were established after preprocessing the data of the edge defect of soft packaging cups.The models were re-trained after introducing the parameters with strong feature extraction ability into the local model by using the transfer learning to improve the classification accuracy of the model.Results:The results showed that the accuracy of the neural network model was 97.69%to small-scale soft-packaging cup edge image sets.Conclusions:The established model is effective in the detection of edge defects of flexible food packaging cups.
作者 金宇霏 陆慧娟 郭鑫璐 张俊 朱文杰 JIN Yufei;LU Huijuan;GUO Xinlu;ZHANG Jun;ZHU Wenjie(Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province,College ofInformation Engineering,China Jiliang University,Hangzhou 310018,China;Institute of Food Sciences,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China)
出处 《中国计量大学学报》 2021年第3期325-331,共7页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.61272315) 浙江省自然科学基金项目(No.LY21F020028) 现代农业产业技术体系建设专项项目(No.CARS-26-04BY) 浙江省大学生科研创新活动计划项目(No.2021R409054)。
关键词 迁移学习 深度残差网络 缺陷检测 ResNet50 小样本 transfer learning deep residul network defect detection ResNet50 small scale data set
  • 相关文献

参考文献7

二级参考文献35

共引文献23

同被引文献30

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部