摘要
文本是战场信息的重要数据模态,从中挖掘地理环境时空语义信息是机器理解战场环境的重要方法,有助于扩展战场环境的空间认知与理解。本文设计一种基于主题模型,反映地理时空因素与事件主题之间语义关系的计算方法,通过信息抽取,挖掘主题要素相关信息,形成不同主题分类及其对应的特征词汇分布;将事件主题与地理时空语义特征建立联合分布模型,自动发现时间、空间与事件主题之间的相关性,从而生成地理时空隐含的语义主题。通过试验验证并结合应用实践,得到如下结论:利用事件主题与位置信息的关联,并应用空间分析方法探寻不同主题的时空分布规律,可为新事件的位置预测及趋利避害对策制定提供基础,从而拓展传统的地理事件主题分析。
Text is an important data mode of battlefield information.Mining spatial-temporal semantic information of geographical environment from battlefield text is an important method for machine to understand battlefield environment,which is helpful to expand battlefield environment spatial cognition and understanding.A method based on topic model is designed to reflect the semantic relationship between geographical spatio-temporal factors and event topics,and different topic classification with its distribution of word features are formed by the method of information extraction to mine the relevant information of topic elements;the joint distribution model of event topic and geographical spatio-temporal semantic features is established to automatically discover the correlation among time,space and event topics,thus generating the latent geographical spatio-temporal semantic topics;through the experimental verification and the application practice,we believe that the law of spatio-temporal distribution under different topics can be seek by using correlation between the event topics and location information with spatial analysis method,so as to provide the basis for the location prediction of new events and the countermeasures of seeking advantages and avoiding disadvantages,and expand the traditional thematic analysis of geographical events.
作者
朱杰
张宏军
廖湘琳
田江鹏
ZHU Jie;ZHANG Hongjun;LIAO Xianglin;TIAN Jiangpeng(College of Command and Control Engineering, Army Engineering University of PLA, Nanjing 210002, China;73021 Troops, Hangzhou 315023, China;Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China)
出处
《测绘学报》
EI
CSCD
北大核心
2021年第10期1404-1415,共12页
Acta Geodaetica et Cartographica Sinica
基金
中国博士后科学基金(2019M664028)
国家自然科学基金(41701457)。
关键词
主题模型
地理环境
时空数据
语义理解
空间分析
topic model
geographical environment
spatio-temporal data
semantic understanding
spatial analysis