期刊文献+

基于LSTM循环神经网络的横波预测方法 被引量:6

Shear wave prediction method based on LSTM recurrent neural network
下载PDF
导出
摘要 针对碳酸盐岩储层岩性多样、孔隙结构复杂导致传统横波预测方法受限的问题,文中提出利用长短时记忆神经网络(LSTM)预测复杂碳酸盐岩储层的横波时差。相对于传统的简单点对点学习模式,LSTM通过复用神经元结构,有效学习测井参数的序列信息。以苏里格气田苏东地区碳酸盐岩储层为例,选择声波时差、密度、自然伽马等16个对横波速度较为敏感的测井参数,构建了基于LSTM的横波预测模型。和机器学习方法(Bayes,BP,DT,KNN,LR,SVM)以及Xu-Payne岩石物理模型方法相比,基于LSTM的预测模型均方根误差仅为3.36μs/m,决定系数达到0.967,表明基于LSTM的横波预测模型更加符合实际地质情况,在复杂碳酸盐岩储层的研究中具有广阔的应用前景。 Aiming at limitations of traditional shear wave velocity prediction method due to the diversified lithology and complex pore structure of carbonate reservoirs,using long-short-term memory neural network(LSTM)to predict shear wave time difference of complex carbonate reservoirs was proposed.Compared with the traditional simple point-to-point learning mode,the LSTM method can fully learn the sequence information of the logging parameters by reusing the neuron structures.Taking the carbonate reservoir in Sudong area of Sulige gas field as an example,16 logging parameters sensitive to shear wave velocity,such as AC,DEN,and GR,were selected to construct shear wave prediction model based on LSTM.Compared with traditional machine learning methods(Bayes,BP,DT,KNN,LR,SVM)and Xu-Payne rock physics model,the root mean square error of the prediction model based on LSTM is only 3.36μs/m,and the coefficient of determination reaches 0.967.It shows that the shear wave prediction model of LSTM is more in line with the actual geological distribution,which has broad application prospects in the research of complex carbonate reservoirs.
作者 周恒 武中原 张欣 张春雷 马乔雨 ZHOU Heng;WU Zhongyuan;ZHANG Xin;ZHANG Chunlei;MA Qiaoyu(School of Science,China University of Geosciences,Beijing 100083,China;School of Statistics,Beijing Normal University,Beijing 100875,China;Beijing Zhongdirunde Petroleum Technology Co.Ltd.,Beijing 100083,China)
出处 《断块油气田》 CAS CSCD 北大核心 2021年第6期829-834,共6页 Fault-Block Oil & Gas Field
基金 国家科技重大专项“鄂尔多斯盆地大型岩性地层油气藏勘探开发示范工程”(2016ZX05050)。
关键词 横波预测 长短期记忆神经网络 深度学习 碳酸盐岩储层 shear wave prediction LSTM deep learning carbonate reservoir
  • 相关文献

参考文献15

二级参考文献175

共引文献377

同被引文献98

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部