期刊文献+

基于天空区域分割和条件约束优化的图像去雾研究 被引量:5

Research on image defogging based on sky region segmentation and conditional constraint optimization
下载PDF
导出
摘要 针对雾天环境中成像设备拍摄的景物容易出现图像模糊、目标丢失、成像质量差等而引起图像识别率下降的问题,提出一种基于天空区域分割和条件约束优化的图像去雾方法,解决使用暗原色先验理论技术进行图像去雾而导致的天空区域出现晕圈和失真的现象。对图像进行预处理后,将图像划分为天空区域和非天空区域,用灰度直方图估计环境光,利用已知条件对非天空区域的透射率进行合理约束,通过自适应增加天空区域透射率的方法,避免天空区域出现严重的颜色失真现象,合并之后对这两部分的透射率进行滤波细化。结果表明:对于含有天空区域的雾天图像,使用本文算法去雾后的图像轮廓和细节上都有较大改进,能够达到去雾目的。这对于提高成像设备在雾天环境中的工作效率具有重要意义。 In view of the phenomenon of blurry scene,target loss and poor quality by imaging equipment in foggy environment leading to the decrease of image recognition rate,an image defogging method was proposed based on sky region segmentation and conditional constraint optimization to solve the problems of halo and distortion in the sky region caused by dark channel prior.After preprocessing the image,the image was divided into sky region and non-sky region.The gray histogram was used to estimate the ambient light.The transmittance of the non-sky region was constrained by using known conditions.The method could adaptively increase the transmittance of the sky region,which avoided serious color distortion in the sky region.The transmittance of the two parts were filtered and refined after merging.The experimental results showed that the outlines and details of fog images with sky area were improved greatly after using this algorithm,capable of satisfying the purpose of defogging well.This was of great significance to improve the working efficiency of imaging equipment in foggy environment.
作者 李树平 张辽 刘俊利 LI Shuping;ZHANG Liao;LIU Junli(School of Mechanical and Power Engineering,Henan Polytechnic University,Jiaozuo454000,Henan,China)
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2021年第5期132-138,共7页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(U1504503) 河南理工大学博士基金资助项目(722103/001/008) 河南省科技攻关计划项目(212102210050)。
关键词 天空区域分隔 条件约束 图像去雾 暗原色先验 透射率 sky region segmentation conditional constraint image defogging dark channel prior transmittance
  • 相关文献

参考文献8

二级参考文献104

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992. 被引量:1
  • 4Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827. 被引量:1
  • 5Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254. 被引量:1
  • 6Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724. 被引量:1
  • 7Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193. 被引量:1
  • 8Hauti6re N, Tarel J P, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance throughuse of an onboard camera. Machine Vision and Applications 2006, 17(1): 8-20. 被引量:1
  • 9Kim T K, Paik J K, Kang B S. Contrast enhancement sys- tem using spatially adaptive histogram equalization with temporal filtering. IEEE Transactions on Consumer Elec- tronics, 1998, 44(1): 82-87. 被引量:1
  • 10Stark J A. Adaptive image contrast enhancement using gen- eralizations of histogram equalization. IEEE Transactions on Image Processing, 2000, 9(5): 889-896. 被引量:1

共引文献343

同被引文献43

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部