期刊文献+

基于卷积神经网络的白酒酒花分类研究 被引量:7

Research on classification of liquor hops based on convolution neural network
下载PDF
导出
摘要 目的:实现白酒酒花自动分类,提高摘酒的实时性与稳定性。方法:提出以机器视觉结合卷积神经网络代替人眼进行摘酒的方法,并与多种图像分类方法进行比较,验证改进分类算法的优越性。结果:基于改进Vgg16卷积神经网络+迁移学习方法分类模型准确率高达96.69%。结论:该方法能够实时稳定地对白酒酒花进行分类。 Objective:This study focuses on realizing the automatic classification of liquor flowers and then improving the real-time and stability of liquor picking.Methods:The machine vision combined with convolutional neural network was used to replace human eyes for liquor picking.Comparing with many image classification methods,the superiority of the improved algorithm was verified.Results:The results showed that the classification accuracy of the model based on the improved Vgg16 convolutional neural network plus transferring-learning method was up to 96.69%.Conclusion:This method can be used in the real-time classification of Baijiu hops stably.
作者 潘斌 韩强 姚娅川 PAN Bin;HAN Qiang;YAO Ya-chuan(School of Automation and Information Engineering,Sichuan University of Science&Engineering,Zigong,Sichuan 643000,China;Sichuan Key Laboratory of Artificial Intelligence,Sichuan University of Science&Engineering,Zigong,Sichuan 643000,China;School of Physics and Electrical Engineering,Sichuan University of Science&Engineering,Zigong,Sichuan 643000,China)
出处 《食品与机械》 北大核心 2021年第10期30-37,88,共9页 Food and Machinery
基金 四川省科技厅项目(编号:2021YFS0339) 四川省重大科技专项项目(编号:2018GZDZX0045)。
关键词 白酒 酒花 机器视觉 图像分类 卷积神经网络 baijiu hops machine vision image classification convolution neural network
  • 相关文献

参考文献12

二级参考文献48

共引文献75

同被引文献165

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部