期刊文献+

Acollaborative target tracking algorithm formultiple UAVs with inferior tracking capabilities 被引量:4

原文传递
导出
摘要 Target tracking is one of the hottest topics in the field of drone research.In this paper,we study the multiple unmanned aerial vehicles(multi-UAV)collaborative target tracking problem.We propose a novel tracking method based on intention estimation and effective cooperation for UAVs with inferior tracking capabilities to track the targets that may have agile,uncertain,and intelligent motion.For three classic target motion modes,we first design a novel trajectory feature extraction method with the least dimension and maximum coverage constraints,and propose an intention estimation mechanism based on the environment and target trajectory features.We propose a novel Voronoi diagram,called MDA-Voronoi,which divides the area with obstacles according to the minimum reachable distance and the minimum steering angle of each UAV.In each MDA-Voronoi region,the maximum reachable region of each UAV is defined,the upper and lower bounds of the trajectory coverage probability are analyzed,and the tracking strategies of the UAVs are designed to effectively reduce the tracking gaps to improve the target sensing time.Then,we use the Nash Q-learning method to design the UAVs’collaborative tracking strategy,considering factors such as collision avoidance,maneuvering constraints,tracking cost,sensing performance,and path overlap.By designing the reward mechanism,the optimal action strategies are obtained as the control input of the UAVs.Finally,simulation analyses are provided to validate our method,and the results demonstrate that the algorithm can improve the collaborative target tracking performance for multiple UAVs with inferior tracking capabilities.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第10期1334-1350,共17页 信息与电子工程前沿(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.61873033) the Science Foundation of Fujian Normal University(No.Z0210553) the Natural Science Foundation of Fujian Province,China(No.2020H0012)。
  • 相关文献

参考文献7

二级参考文献45

  • 1张纯刚,席裕庚.Robot path planning in globally unknown environments based on rolling windows[J].Science China(Technological Sciences),2001,44(2):131-139. 被引量:12
  • 2张祥银,段海滨,余亚翔.基于微分进化的多UAV紧密编队滚动时域控制[J].中国科学:信息科学,2010,40(4):569-582. 被引量:10
  • 3CAMPBELL M E,WHEELER M.Cooperative tracking using vision measurements on seascan UAVs[J].IEEE Transactions on Control Systems Technology,2007,15(4):613-627. 被引量:1
  • 4FREW E W.Cooperative standoff tracking of uncertain moving targets using active robot networks[C]//Proceedings of the 2007 IEEE International Conference on Robotics and Automation.New York:IEEE,2007:3277-3282. 被引量:1
  • 5KIM J,KIM Y.Moving ground target tracking in dense obstacle areas using UAVs[C]//The 17th IFAC World Congress.Seoul:Elsevier,2008. 被引量:1
  • 6YANG P,FREEMAN R A,LYNCH K M.Distributed cooperative active sensing using consensus filters[C]//Proceedings of the 2007 IEEE International Conference on Robotics and Automation.New York∷IEEE,2007:405-410. 被引量:1
  • 7FREW E W.Approximating information content for active sensing tasks using the unscented transform[C]//Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.New York∷IEEE,2008:2559-2564. 被引量:1
  • 8TRIPLETT B I,KLEIN D J,MORGANSEN K A.Cooperative estimation for coordinated target tracking in a cluttered environment[J].Mobile Networks and Applications,2009,14(3):336-349. 被引量:1
  • 9CHUNG T H,BURDICK J W,MURRAY R M.A decentralized motion coordination strategy for dynamic target tracking[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation.New York∷IEEE,2006:2416-2422. 被引量:1
  • 10HARTIKAINEN J,SARKKA S.Optimal filtering with Kalman filters and smoothers-a manual for MATLAB toolbox EKF/UKF[EB/OL].Espoo,Finland,2008.www.lce.hut.fi/research/mm/ekfukf/. 被引量:1

共引文献56

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部