摘要
以公理化模糊集合理论作为基础,把模糊推理看成两个模糊隶属空间之间的映射,利用输入模糊集合在模糊隶属空间中的构成方式,给出了模糊推理输出结果的3种基本形式。对于强否定算子、t-模算子、t-余模算子,利用Minkowski积分形式的距离讨论了这些算子在模糊隶属空间中的扰动性,并在此基础之上分析所提模糊推理方法的连续性。
Based on the axiomatic fuzzy set theory,this paper regards fuzzy reasoning as the mapping between two fuzzy membership spaces,and gives three basic forms of fuzzy reasoning output results by using the composition of input fuzzy sets in fuzzy membership spaces.For strongly negative operators,t-modulus operators and t-comodule operators,the perturbation of these operators in fuzzy membership space is discussed by using Minkowski integral distance,and the continuity of fuzzy reasoning method proposed in this paper is analyzed on this basis.
作者
康波
潘小东
王虎
KANG Bo;PAN Xiao-dong;WANG Hu(School of Mathematics,Southwest Jiaotong University,Chengdu 611756,China)
出处
《计算机科学》
CSCD
北大核心
2021年第S02期57-62,共6页
Computer Science
基金
国家自然科学基金(61673320)。
关键词
公理化模糊集合
模糊推理
模糊隶属空间
扰动性
连续性
Axiomatic fuzzy sets
Fuzzy reasoning
Fuzzy membership space
Perturbation
Continuity