期刊文献+

考虑不同潜伏期的异质传感网络恶意程序传播建模与分析 被引量:1

MODELING AND ANALYSIS OF MALWARE PROPAGATION IN HETEROGENEOUS SENSOR NETWORKS CONSIDERING DIFFERENT INCUBATION PERIODS
下载PDF
导出
摘要 为了更加准确地揭示恶意程序在异质传感网络中的传播规律,考虑异质传感器节点的移动性,基于扩展经典传染病理论而提出具有不同恶意程序潜伏期的延迟HSEIRD(Heterogeneous Susceptible-Exposed-Infected-Recovered-Dead)模型。计算得出该模型的稳定点,并使用下一代矩阵算法,得到该模型的基本再生数。进行数值模拟,以验证不同恶意程序潜伏期和自由移出率对异质传感网络稳定性的影响。 In order to more accurately reveal the propagation of malware in heterogeneous sensor networks, a delayed HSEIRD(Heterogeneous Susceptible-Exposed-Infected-Recovered-Dead) model with different latency of malware is proposed based on extending classic epidemic, which considers mobility of heterogeneous sensor nodes. The stability point of the model was calculated, and the next generation matrix algorithm was used to calculate the basic regeneration number of the model. The numerical simulations were performed to verify the impact of different malware latency and the free removal rate on the stability of heterogeneous sensor networks.
作者 刘少锋 张红 和青青 沈士根 曹奇英 Liu Shaofeng;Zhang Hong;He Qingqing;Shen Shigen;Cao Qiying(College of Computer Science and Technology,Donghua University,Shanghai 201620,China;Department of Computer Science and Engineering,Shaoxing University,Shaoxing 321000,Zhejiang,China)
出处 《计算机应用与软件》 北大核心 2021年第11期307-313,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61772018)。
关键词 异质传感网络 传染病模型 潜伏期 基本再生数 Heterogeneous sensor networks Epidemic model Latent period Basic regeneration number
  • 相关文献

参考文献20

二级参考文献125

  • 1李军,刘君华.多传感器融合系统的可靠性模型研究[J].西安交通大学学报,2004,38(8):775-778. 被引量:8
  • 2陈利,潘正清,向郑涛,陈宇峰.蠕虫扫描策略和流量模拟方法研究[J].计算机工程与设计,2007,28(7):1528-1531. 被引量:2
  • 3Wang Y,Wen S,Xiang Y,et al.Modeling the propagation of worms in networks:a survey.IEEE Communications Surveys and Tutorials,2014,16(2):942-960. 被引量:1
  • 4Gao H,Hu J,Huang T,et al.Security issues in online social networks.IEEE Internet Computing,2011,15(4):56-63. 被引量:1
  • 5Makridakis A,Athanasopoulos E,Antonatos S,et al.Understanding the behavior of malicious applications in social networks.IEEE Network,2010,24(5):14-19. 被引量:1
  • 6Chen J,Kiremire A R,Brust M R,et al.Modeling online social network users’profile attribute disclosure behavior from a game theoretic perspective.Computer Communications,2014(49):18-32. 被引量:1
  • 7Bose A,Shin K G.Agent-based modeling of malware dynamics in heterogeneous environments.Security and Communication Networks,2013,6(12):1576-1589. 被引量:1
  • 8Faghani M R,Nguyen U T.A study of xss worm propagation and detection mechanisms in online social networks.IEEE Transactions on Information Forensics and Security,2013,8(11):1815-1826. 被引量:1
  • 9Sanzgiri A,Hughes A,Upadhyaya S.Analysis of malware propagation in Twitter.Proceedings of the IEEE Symposium on Reliable Distributed Systems,Braga,Portugal,2013:195-204. 被引量:1
  • 10Feng L,Liao X,Han Q,et al.Dynamical analysis and control strategies on malware propagation model.Applied Mathematical Modeling,2013,37(16-17):8225-8236. 被引量:1

共引文献51

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部