期刊文献+

滚动导轨副多因素振动响应分析

Vibration Response Analysis of a Linear Motion Bearing Stage Under Multiple Factors
下载PDF
导出
摘要 为研究滚动导轨副振动响应与导轨直线度误差、预紧力、外部激振力、外部静载荷的关系,建立了多因素下五自由度滚动导轨副非线性动力学模型。将导轨直线度误差等效成滚动体弹性变形,建立滚动导轨副弹性接触变形量模型;将滚动导轨副简化成质量弹簧系统,结合赫兹理论推导非线性弹簧弹性势能,基于拉格朗日方程构建系统动力学模型,通过龙格-库塔方法完成模型求解。以某一滚动导轨副为例,分析了误差波长与幅值、激振力频率与幅值、静载荷以及预紧力对振动响应的影响规律,结果表明:直线度误差和激振力的幅值对位移振幅有显著影响;法向直线位移振幅对法向静载荷敏感度更高;随着预紧力等级的增加,各向位移峰值对应的频率比明显增加。 A five-degree-of-freedom nonlinear dynamic model of linear motion bearing stage(LMBS)under multiple factors is established to investigate the relationship between vibration response of LMBS and guideway straightness error,preload,external excitation force,external static load.The guideway straightness error is equivalent to elastic deformation of rolling element,and the elastic contact deformation model of LMBS is built.The LMBS is simplified into a mass spring system,and the elastic potential energy of nonlinear spring is derived with Hertz theory.The dynamic model of system is established based on Lagrange equation,the model is solved by Runge-Kutta method.Taking LMBS as an example,the influence rules of error wavelength and amplitude,frequency and amplitude of excitation force,static load and preload on vibration response are analyzed.The results show that:the amplitudes of straightness error and excitation force have a significant effect on displacement amplitude;normal linear displacement amplitude is more sensitive to normal static load;with the increase of preload level,the frequency ratio corresponding to displacement peak in each direction increases obviously.
作者 沈瑞豪 马雅丽 陈志 SHEN Ruihao;MA Yali;CHEN Zhi(School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China)
出处 《轴承》 北大核心 2021年第11期30-36,共7页 Bearing
基金 国家科技重大专项(2015ZX04014-021)。
关键词 循环球(滚子)直线轴承 导轨 振动 动力学模型 滚动体 弹性变形 激振力 预载荷 recirculating ball(roller)linear bearing guideway vibration dynamic model rolling element elastic deformation excitation force preload
  • 相关文献

参考文献5

二级参考文献21

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部