期刊文献+

一种20 kg砝码组智能检定系统的设计

Design of an Intelligent Verification System for 20 kg Weight Set
下载PDF
导出
摘要 砝码智能化检定有助于提高砝码检定效率、增强检测数据可溯源性。文章从20 kg砝码组智能化检定系统整体设计入手,提出依靠三维堆放20 kg砝码组深度学习识别分割技术、多模态传感定位技术配合设计的软硬件平台,实现日光灯照明下三维堆放20 kg砝码组的智能检定。通过模拟搭建三维堆放砝码组开展系统测试试验,验证了智能检定系统的有效性、准确性,单个砝码实例检定时间约为42 s,可以满足实际20 kg砝码组检定过程需要,实现“机器代人”,大幅提高20 kg砝码组检定效率。 The intelligent verification of weights is helpful to improve the verification efficiency of weights and enhance the traceability of test data.Starting with the overall design of the intelligent verification system of 20 kg weight set,this paper proposes a software and hardware platform based on the deep learning,identification and segmentation technology of three-dimensional stacking 20 kg weight set and the multi-modal sensing and positioning technology,so as to realize the intelligent verification of three-dimensional stacking 20 kg weight set under the illumination of fluorescent lamp.The validity and accuracy of the intelligent verification system are verified by simulating the construction of three-dimensional stacking weight set and carrying out system test.The verification time of a single weight example is about 42 s,which can meet the needs of the actual verification process of 20 kg weight set,realize"machine replace people"and greatly improve the verification efficiency of 20 kg weight group.
作者 马健 赵迪 郭琳琳 刘桂雄 MA Jian;ZHAO Di;GUO Linlin;LIU Guixiong(Guangzhou Institute of Measurement and Testing Technology,Guangzhou 510030,China;School of Mechanical&Automotive Engineering,South China University of Technology,Guangzhou 510641,China)
出处 《现代信息科技》 2021年第12期1-5,共5页 Modern Information Technology
基金 国家市场监督管理总局科技计划项目(2019MK086)。
关键词 20 kg砝码组 深度学习 多模态传感 智能化平台 20 kg weight set deep learning multi-modal sensing intelligent platform
  • 相关文献

参考文献5

二级参考文献33

  • 1刘建国,开桂云,薛力芳,张春书,刘艳格,王志,郭宏雷,李燕,孙婷婷,袁树忠,董孝义.基于高非线性光子晶体光纤Sagnac环形镜的全光开关[J].物理学报,2007,56(2):941-945. 被引量:16
  • 2Seitz S, Curless B, Diebel J, et al. A comparison and e- valuation of multi-view stereo reconstruction algorithms [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA : IEEE Computer Society, 2006 : 519 - 528. 被引量:1
  • 3Bradley D, Boubekeur T, Heidrieh W. Accurate multi- view reconstruction using robust binocular stereo and surface meshing[C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE Computer Society, 2008: 1-8. 被引量:1
  • 4Curless B, Levoy M. A volumetric method for building complex models from range images[C] // Proceedings of SIGGRAPH. New Orleans, USA: ACM Press, 1996: 303 - 312. 被引量:1
  • 5Li J, Li E, Chen Y, et al. Bundled depth-map merging for multi-view stereo [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE Computer Society, 2010: 2769 - 2776. 被引量:1
  • 6Zach C, Pock T, Bischof H. A globally optimal algorithm for robust tv-ll range image integration[C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE Computer Society, 2007 : 1 - 8. 被引量:1
  • 7Narayanan P, Rander P, Kanade T. Constructing virtual worlds using dense stereo[C]//Proceedings of IEEE International Conference on Computer Vision. Bombay, India: IEEE Computer Society, 1998:3- 10. 被引量:1
  • 8Merrell P, Akbarzadeh A, Wang L, et al. Real-time visibility-based fusion of depth maps[C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE Computer Society, 2007: 1-8. 被引量:1
  • 9Pollefeys M, Nistr D, Frahm J M, et al. Detailed real- time urban 3D reconstruction from video [ J ]. International Journal of Computer Vision, 2008, 78: 143 - 167. 被引量:1
  • 10Zhang G, Jia J, Wong T T, et al. Consistent depth maps recovery from a video sequence [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 : 974 - 988. 被引量:1

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部