期刊文献+

Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches 被引量:1

原文传递
导出
摘要 The Lower Cambrian Niutitang and Sinian Doushantuo shales are the most important and widespread source rocks and target layers in South China. Reliable data of the thermal maturity of organic matter(OM) is widely used to assess hydrocarbon generation and is a key property used in determining the viability and hydrocarbon potential of these new shales. Nevertheless, traditional thermal maturity indicators are no longer suited to the vitrinite-lack marine shales. This study aims to combine high throughput Raman and infrared spectroscopy analysis to confirm and validate the thermal maturity in comparison with the bitumen reflectance(R_(b)). Raman parameters such as the differences between the positions of the two bands(V_(G)–V_(D)) are strong parameters for calculating the thermal maturity in a large vitrinite reflectance(R_(o)) ranging from 1.60% to 3.80%. The infrared spectroscopy analysis indicates that the aromatic C=C bands and CH_(2)/CH_(3) aliphatic groups both are closely correlated with thermal maturity. The calculated R_(o) results from Raman and infrared spectroscopy are in strong coincidence with the R_(b). The relationships between R_(b) and pore volumes/surface areas(calculated from N_(2) adsorption) indicate that the sample with R_(b) of 3.40% has the lowest pore volumes and surface areas. Focused ion beam scanning electron microscopy(FIB-SEM) observations of OM pores indicate that R_(o) of approximately 3.60% may be an upper limit for OM porosity development. Obviously, kerogen Raman and infrared spectroscopy can indicate methods for reducing the risk in assessing maturity with practical, low-cost accurate results. Exploration of shale gas in the high maturity(>3.40%–3.60%) region carries huge risks.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2021年第5期1262-1277,共16页 地球科学学刊(英文版)
基金 The authors would like to thank the National Natural Science Foundation of China(Nos.41672139,41690134) China Geological Survey Project(No.DD20190561-1) China National Science and Technology Major Project(No.2016ZX05034-002-003)for financial assistance to this research。
  • 相关文献

参考文献17

二级参考文献231

共引文献1138

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部