期刊文献+

基于卷积神经网络图像质量评价的技术研究 被引量:4

On Image Quality Evaluation Technology Based on Convolutional Neural Network
下载PDF
导出
摘要 随着机器学习在图像识别领域应用的深入,近年来衍生出了大批如NSS-TS/BRISQUE等图像质量评价方法,但其在计算精度和性能方面相对较差。因此,作者提出了基于卷积神经网络的图像质量评价算法,通过对图像的预处理、层次化分池处理等方法,有效提升了算法的学习能力和评价精度。通过与NSS-TS/BRISQUE/BLIINDS-II等算法的对比,证明算法在线性相关性和Spearman等方面优势明显。 With the application ofmachine learning in the field of image recognition, a large number of image quality evaluation methods,such as nss-ts / BRISQUE, have been derived in recent years, but their calculation accuracy and performance are relatively poor. Therefore,this paper proposes an image quality evaluation algorithm based on convolutional neural network. Through image preprocessing,hierarchical pool processing and other methods, it effectively improves the learning ability and evaluation accuracy of the algorithm.Compared with nss-ts / BRISQUE/ bliinds-ii and other algorithms, the algorithmhas obvious advantages in linear correlation and Spearman.
作者 李慧 LI Hui(Department of Information Technology,Anhui Food Engineering Vocational College,Hefei 230001,China)
出处 《遵义师范学院学报》 2021年第5期84-87,共4页 Journal of Zunyi Normal University
关键词 卷积神经网络 图像质量评价 线性相关 convolutional neural network image quality evaluation linear correlation
  • 相关文献

参考文献6

二级参考文献36

  • 1Zilly F, Kluger J, Kauff P. Production rules for stereo acquisition[J]. Proceedings of the IEEE, 2011, 99(4): 590-606. 被引量:1
  • 2Urey H, Chellappan K V, Erden E, et al. State of the art in stereoscopicand autostereoscoic displays[J]. Proceedings of theIEEE, 2011, 99(4): 540-555. 被引量:1
  • 3You J Y, Xing L, Perkis A, et al. Perceptual quality assessmentfor stereoscopic images based on 2D image quality metrics anddisparity analysis[OL]. [2015-06-21]. http://events.engineering.asu.edu/vpqm/vpqm10/Proceedings_VPQM2010/vpqm_p09.pdf. 被引量:1
  • 4Benoit A, Le Callet P, Campisi P, et al. Using disparity forquality assessment of stereoscopic images[C] //Proceedings ofthe 15th IEEE International Conference on Image Processing.Los Alamitos: IEEE Computer Society Press, 2008: 389-392. 被引量:1
  • 5Bensalma R, Larabi M C. A perceptual metric for stereoscopicimage quality assessment based on the binocular energy[J].Multidimensional Systems and Signal Processing, 2013, 24(2):281-316. 被引量:1
  • 6Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEETransactions on Image Processing, 2011, 20(12): 3350-3364. 被引量:1
  • 7Saad M A, Bovik A C, Charrier C. Blind image quality assessment:a natural scene statistics approach in the DCT domain[J].IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352. 被引量:1
  • 8Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on ImageProcessing, 2012, 21(12): 4695-4708. 被引量:1
  • 9Hinton G E, Osindero S, Teh Y W. A fast learning algorithm fordeep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554. 被引量:1
  • 10Salakhutdinov R, Hinton G. Deep Boltzmann machines[J].Journal of Machine Learning Research-Proceedings Track,2009, 9(1): 448-455. 被引量:1

共引文献64

同被引文献52

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部