期刊文献+

基于改进MF-DFA的零件特征提取与缺陷识别 被引量:3

Feature Extraction and Defect Identification of Parts Based on Improved MF-DFA
下载PDF
导出
摘要 针对现代工业制造背景下的个性化机械零件,通常具有不规则和一定自相似性的分形特性,提出一种基于改进多重分形去趋势波动分析(MF-DFA)法的零件特征提取与缺陷识别方法。首先,选用三角形覆盖模块替代传统MF-DFA法中的正方形覆盖模块,解决传统MF-DFA法存在过度覆盖的问题,为零件图像缺陷识别提供更精准的数据;其次,利用改进MF-DFA法计算零件图像的多重分形谱;再利用核主成分分析(KPCA)方法提取零件图像的缺陷特征值;最后通过支持向量机(SVM)对零件缺陷进行识别。实验结果表明,三角覆盖二维MF-DFA算法能够准确提取零件特征,提高零件缺陷识别的准确率。 Aiming at personalized mechanical parts under the background of modern industrial manufacture,it usually have the fractal characteristics of irregularity and self-similarity,this paper presents a feature extraction and defect identification of parts method based on improved multifractality detrended fluctuation analysis(MF-DFA).First of all,the triangle covering module is used to replace the square covering module in the traditional MF-DFA method,addressing the problem of over-coverage in traditional MF-DFA method and provide more accurate data for defect identification of part images;Secondly,the modified MF-DFA method is used to calculate the multifractal spectrum of part images.Then,a method of kernelized principal component analysis(KPCA)is used to extract the value of defect features of part images;Finally,support vector machines(SVM)is adopted to identify parts defects.Experimental results show that the triangular cover two-dimensional MF-DFA algorithm can accurately extract part features and improve the accuracy of part defect recognition.
作者 何涛 王幸 王少东 王正家 盛文婷 HE Tao;WANG Xing;WANG Shao-dong;WANG Zheng-jia;SHENG Wen-ting(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China;Hubei Key Laboratory of Modern Manufacture Quality Engineering,Hubei University of Technology,Wuhan 430068,China)
出处 《组合机床与自动化加工技术》 北大核心 2021年第10期105-110,共6页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(51275158)。
关键词 零件图像 去趋势波动分析 多重分形 特征提取 缺陷识别 part image detrended fluctuation analysis multifractality feature extraction defect identification
  • 相关文献

参考文献9

二级参考文献42

  • 1胡金海,谢寿生,侯胜利,尉询楷,何卫锋.核函数主元分析及其在故障特征提取中的应用[J].振动.测试与诊断,2007,27(1):48-52. 被引量:24
  • 2王新峰,邱静,刘冠军.核主元分析中核函数参数选优方法研究[J].振动.测试与诊断,2007,27(1):62-64. 被引量:14
  • 3王金东,王巍,李宏灿.往复压缩机轴承故障的多重分形特征提取[J].振动与冲击,2008,27(S):313-315. 被引量:2
  • 4Li M, Ma W X, Liu X J. Investigation of rolling bear- ing fault diagnosis based on multi-fractal and general fractal dimension[C] // Second Intelligent Computa- tion Technology and Automation. Zhangjiajie: IEEE Computer Society, 2009: 545-548. 被引量:1
  • 5Yu Y, Li B L, Shang J S, et al. The application of vibration signal muhi-fractal in fault diagnosis[C]// Second International Conference on Future Networks. Sanya: IEEE Computer Society, 2010: 164-167. 被引量:1
  • 6Halsey T C, Jensen M H, Kadanofflp, et al. Fractal measures and their singularities: the characterization of strange sets[J]. Physical Review A: 1986, 33(2) : 1141-1151. 被引量:1
  • 7Peng C K, Havlin S, Stanley H E, et al. Quantifica- tion of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J]. Chaos, 1995, 5(1): 82-87. 被引量:1
  • 8Kantelhardt J W, Zsehiegner S A, Braun P, et al. Multifratal detrended fluctuation analysis of nonsta- tionary time series[J]. Phsica A: 2002, 316(87) : 87- 114. 被引量:1
  • 9Turie E, Tadeo J L, Martin E. Molecularly imprin- ted polymeric fibers for solid phase microextraction [J]. AnalChem, 2007, 79(8): 3099-3104. 被引量:1
  • 10Lane M R B, Rocha, Benjamim R D, et al. SVM practical industrial application for mechanical faults diagnostic[J]. Expert Systems with Applications, 2011, 38(6): 6980-6984. 被引量:1

共引文献70

同被引文献37

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部