摘要
环氧树脂/氰酸酯共混树脂已用作液氧贮箱复合材料的基体树脂。本文选用低吸水率的双酚A二炔丙基醚(DPEBA)与氰酸酯等摩尔共混,研究以不同催化剂对DPEBA与氰酸酯共混树脂体系固化反应的影响,并考察了催化固化的共混树脂体系的热稳定性和冲击性能。研究结果表明:过渡金属的乙酰丙酮盐和二丁基二月桂酸锡可降低双酚AF型氰酸酯(BAFDCy)的固化温度,质量分数为0.2%的乙酰丙酮铜可明显使BAFDCy的固化温度降至200℃以下。双酚A二炔丙基醚(DPEBA)预聚后与氰酸酯等摩尔共混,在0.3%的Cu(acac)2催化下,可在200℃以下固化,与双酚E型氰酸酯、双酚A型氰酸酯和双酚AF型氰酸酯共混树脂的固化物在空气中600℃的残留率分别为38%、36%和0.7%,浇铸体的冲击强度分别为5、6和8 kJ·m^(−2)。
The blended resins of epoxy/cyanate esters have been used as matrix for composites of liquid oxygen tank.In this paper,the bisphenol A dipropargyl ether(DPEBA)with low water-absorption is blended with cyanate esters in solution at an equimolar ratio,and the effects of catalysts on the curing reaction of the blended DPEBA/cyanate esters are studied.The thermal stability and impact strength of the blended resins are further investigated.The results show that the transition metal acetylacetone and dibutyl ditin laurate can decrease the curing temperature of the bisphenol AF-type cyanate ester(BAFDCy).The copper acetylacetone(Cu(acac)2)can reduce the curing temperature of the BAFDCy to lower than 200℃markedly.The DPEBA is prepolymerized and blended with the bisphenol A-type cyanate ester(BADCy)and bisphenol E-type cyanate ester(BEDCy)in solution at an equimolar ratio.The blended resins could be catalytically cured with 0.3%mass fraction of Cu(acac)2 at a temperature lower than 200℃.The residual yields of the cured blended resins of prepolymerized DPEBA with BEDCy,BADCy,and BAFDCy at 600℃in air are 38%,36%,and 0.7%,respectively,and the impact strength is 5,6,and 8 kJ·m^(−2),respectively.
作者
李川
王晓蕾
田杰
唐靳梅
夏军
叶清
袁荞龙
LI Chuan;WANG Xiaolei;TIAN Jie;TANG Jinmei;XIA Jun;YE Qing;YUAN Qiaolong(Shanghai Composites Science and Technology Co.,Ltd.,Shanghai 201112,China;School of Materials Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处
《上海航天(中英文)》
CSCD
2021年第5期138-145,共8页
Aerospace Shanghai(Chinese&English)
基金
上海航天科技创新基金(SAST2018-070)。
关键词
双酚A二炔丙基醚
氰酸酯
催化固化
热稳定性
冲击强度
bisphenol a dipropargyl ether(DPEBA)
cyanate ester
catalytic curing
thermal stability
impact strength