期刊文献+

基于导向强化Q学习的无人机路径规划 被引量:24

Path planning of UAV using guided enhancement Q-learning algorithm
原文传递
导出
摘要 随着无人机的广泛应用,其飞行能耗和计算能力面临着瓶颈问题,因此无人机路径规划研究越来越重要。很多情况下,无人机并不能提前获得目标点的确切位置和环境信息,往往无法规划出一条有效的飞行路径。针对这一问题,提出了基于导向强化Q学习的无人机路径规划方法,该方法利用接收信号强度定义回报值,并通过Q学习算法不断优化路径;提出"导向强化"的原则,加快了学习算法的收敛速度。仿真结果表明,该方法能够实现无人机的自主导航和快速路径规划,与传统算法相比,大大减少了迭代次数,能够获得更短的规划路径。 With the increasing application of the Unmanned Aerial Vehicle(UAV)technology,the energy consumption and computing capacity of UAV are faced with bottleneck problems,so path planning of UAV is becoming increasingly important.In many cases,the UAV cannot obtain the exact location of the target point and environmental information in advance,and thus is difficult to plan an effective flight path.To solve this problem,this paper proposes a path planning method for UAV using the guided enhancement Q-learning algorithm.This method uses Receiving Signal Strength(RSS)to define the reward value,and continuously optimizes the path by using the Q-learning algorithm.The principle of“guided reinforcement”is proposed to accelerate the convergence speed of the Qlearning algorithm.The simulation results show that the method proposed can realize autonomous navigation and fast path planning for UAV.Compared with the traditional algorithm,it can greatly reduce the number of iterations and obtain a shorter planned path.
作者 周彬 郭艳 李宁 钟锡健 ZHOU Bin;GUO Yan;LI Ning;ZHONG Xijian(College of Communications Engineering,Army Engineering University of PL A.Nanjing 210007,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2021年第9期498-505,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61871400)。
关键词 无人机 路径规划 接收信号强度 Q学习算法 导向强化 UAV path planning receiving signal strength Q-learning algorithm guided enhancement
  • 相关文献

参考文献1

二级参考文献33

  • 1黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 2Dorigo M, StUtzle T. Ant Colony Optimization. New York, USA: MIT Press, 2004. 被引量:1
  • 3Dorigo M, Blum C. Ant Colony Optimization Theory: A Survey. Fheoretical Computer Science, 2005, 344 (2/3) : 243 - 278. 被引量:1
  • 4Blum C. Ant Colony Optimization: Introduction and Recent Trends. Physics of Life Reviews, 2005, 2(4) : 353 -373. 被引量:1
  • 5Shtovba S. Ant Algorithms: Theory and Applications. Programming and Computer Software, 2005, 31 (4) : 167 - 178. 被引量:1
  • 6Dreo J, Siarry P. Continuous Interacting Ant Colony Algorithm Based on Dense Hierarchy. Future Generation Computer Systems, 2004, 20(5) : 841 -856. 被引量:1
  • 7Elbeltagi E, Hegazy T, Grierson D. Comparison among Five Evolutionary-Based Optimization Algorithms. Advanced Engineering Informatics, 2005, 19( 1 ) : 43 -53. 被引量:1
  • 8Stefan J, Daniel M, Middendorf M, et al. On Enforced Convergence of ACO and Its Implementation on the Reconfigurable Mesh Architecture Using Size Reduction Tasks. Journal of Supercomputing, 2003, 26(3) : 221 -238. 被引量:1
  • 9Martin M, Frank R, Hartmut S. Multi Colony Ant Algorithms. Journal of Heuristics, 2002, 8 (3) : 305 - 320. 被引量:1
  • 10Sun Jun, Xiong Shengwu, Guo Fuming. A New Pheromone Updating Strategy in Ant Colony Optimization//Proc of the International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, Ⅰ: 620 - 625. 被引量:1

共引文献2

同被引文献288

引证文献24

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部