期刊文献+

Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production

下载PDF
导出
摘要 Rhizopus oryzae lipase(ROL)was immobilized on the surface of silica coated amino modified CoFe_(2)O_4 nanoparticles and applied for biodiesel production.The results indicated more affinity of the ROL toward its substrate upon immobilization,as revealed by a lower Km value for the immobilized ROL compared to its free counterpart.Intrinsic fluorescence spectroscopy indicated a lower intensity for ROL immobilized on CoFe_(2)O_4 nanoparticles.Besides,immobilized ROL steady state anisotropy measurements presented lower values,which implied assembly of ROL molecules on magnetic nanoparticles upon immobilization as well as their restricted rotation upon covalent attachment.Thermal stability analysis revealed improved activity at higher temperatures for the immobilized enzyme compared to its free counterpart.Accordingly,Pace analysis to determine protein thermal stability revealed preservation of the protein conformation in the presence of increasing temperatures upon immobilization on nanoparticles.Finally,ROL immobilized on CoFe_(2)O_(4)nanoparticles exhibited improved efficiency of biodiesel production in agreement with thermal activity profile.Therefore,the authors suggest application of the lipase molecules immobilized on CoFe_(2)O_(4)nanoparticles for more efficient biodiesel production.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期128-136,共9页 中国化学工程学报(英文版)
基金 financially supported by Research Institute of Applied Science(RIAS)ACECR Institute of Biochemistry and Biophysics(IBB) Iran National Science Foundation(INSF)。
  • 相关文献

参考文献1

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部