期刊文献+

2013—2020年北京市通州区传染病自动预警系统运行情况分析 被引量:5

Operation of China infectious diseases automated-alert and response system in Tongzhou District of Beijing from 2013 to 2020
下载PDF
导出
摘要 目的分析国家传染病自动预警系统(China infectious disease automated-alert and response system, CIDARS)在北京市通州区重点传染病早期预警的应用效果,为该系统的改进和完善提供参考。方法对2013—2020年北京市通州区CIDARS预警信号进行描述性分析,比较分析固定阈值模型、时间模型、时空模型3种模型预警信号数、及时响应率、响应时间、疑似事件阳性率、暴发事件阳性率等指标。结果 2013—2020年北京市通州区CIDARS接收预警信号3940条,及时响应率为98.73%,平均响应时间为0.43(0.18~1.20)h。疑似事件阳性率为26.62%,暴发事件阳性率为1.47%。固定阈值模型预警信号1904条,涉及14种传染病,其中以麻疹、肺结核、布鲁氏菌病为主,共占82.77%;时间模型预警信号1460条,涉及12种传染病,其中以流行性感冒、手足口病、猩红热为主,共占55.61%;时空模型预警信号576条,涉及7种传染病,其中以流行性感冒、其他感染性腹泻病、猩红热为主,共占88.20%。固定阀值模型的暴发事件阳性率高于时空模型(P<0.05)。不同年份之间预警信号响应时间的差异有统计学意义,其中2019年平均响应时间最长,2014和2016年平均响应时间最短(P <0.05)。结论 2013—2020年北京市通州区CIDARS预警信号响应时间和及时响应率保持较高水平,固定阈值模型、时间模型、时空模型3种模型均探测到传染病暴发事件,CIDARS运行有效,但预警系统参数和功能应进一步完善,以提高传染病预警暴发事件阳性率。 Objective To analyze the application effect of China infectious disease automated-alert and response system(CIDARS) for early warning of key infectious disease in Tongzhou District of Beijing, and provide reference for the improvement of earlywarning system. Methods The CIDARS early warning signals in Tongzhou District of Beijing from 2013 to 2020 were descriptively analyzed, and the amount of warning signals, the timely response rate, the response time, positive rate of suspected events and positive rate of outbreak events for fixed-value detection model, temporal model and temporal-spatial model were compared and analyzed.Results A total of 3940 warning signals were collect by CIDARS in Tongzhou District of Beijing. The timely response rate was 98.73%and the average response time was 0.43(0.18-1.20) h. The positive rate of suspected events was 26.62% and positive rate of outbreak events was 1.47%. In the fixed-value detection model, 1904 warning signals were generated on 14 kinds of infectious diseases, among which the measles, tuberculosis and brucellosis accounted for 82.77% of the warning signals. In the temporal model, 1460 warning signals were generated on 12 kinds of infectious diseases, among which the influenza, hand-foot-mouth disease and scarlet fever accounted for 55.61% of the warning signals. In the temporal-spatial model, 576 warning signals were generated on 7 kinds of infectious diseases, among which the influenza, other infectious diarrhea diseases and scarlet fever accounted for 88.20% of the warning signals.The positive rate of outbreak events by fixed-value detection model was higher than that by temporal-spatial model(P <0.05). The response time of early warning signals showed statistically significant difference in different years, and the longest average response time was observed in 2019, while the shortest average response time was observed in 2014 and 2016 years(P <0.05). Conclusions The warning signals of CIDARS system in Tongzhou District of Beijing from 2013 to 2020 maintains high r
作者 苏彦萍 孙晓伟 高汉青 吴芹 李园园 陈志华 张国峰 SU Yan-ping;SUN Xiao-wei;GAO Han-qing;WU Qin;LI Yuan-yuan;CHEN Zhi-hua;ZHANG Guo-feng(Big data office of Beijing Tongzhou District Center for Disease Control and Prevention,101100,China)
出处 《传染病信息》 2021年第5期463-467,共5页 Infectious Disease Information
基金 通州区高层次人才发展支持计划(YHLD2018017)。
关键词 传染病 预警系统 固定阈值模型 时间模型 时空模型 响应时间 暴发事件 系统运行 infectious disease early warning system fixed-value detection model temporal model temporal-spatial model response time outbreak event system operation
  • 相关文献

参考文献20

二级参考文献122

  • 1杨维中,邢慧娴,王汉章,兰亚佳,孙乔,胡世雄,吕伟,袁政安,陈裕旭,董柏青.七种传染病控制图法预警技术研究[J].中华流行病学杂志,2004,25(12):1039-1041. 被引量:144
  • 2马家奇,王丽萍,戚晓鹏,施晓明,杨功焕.基于网络直报的传染病监测自动预警信息系统概念模型[J].疾病监测,2006,21(12):679-681. 被引量:41
  • 3中国疾病预防控制中心.全国传染病自动预警(时间模型)试运行工作方案.北京:中国疾病预防控制中心,2008. 被引量:9
  • 4中国疾病预防控制中心.中国2008年法定传染病发病与死亡报告[R].北京:中国疾病预防控制中心,2009. 被引量:2
  • 5Valenciano M, Bergeri I, Jankovic D, et al. Strengthening early warning fimction of surveillance in the Republic of Serbia:lessons learned after a year of implementation. Euro Surveil, 2004,9(5) :24-26. 被引量:1
  • 6Tsui FC, Espino JU, Dato VM, et al. Technical description of RODS: a real-time public health surveillance system. J Am Med Inform Assoc, 2003,10 ( 5 ) : 399-408. 被引量:1
  • 7Cakici B, Hebing K, Grunewald M, et al. CASE: a framework for computer supported outbreak detection. BMC Med Inform Decis Mak,2010,10:14. 被引量:1
  • 8Wang L, Wang Y, Jin S, et al. Emergence and control of infectious diseases in China. Lancet, 2008, 372 (9649) : 1598- 1605. 被引量:1
  • 9中国疾病预防控制中心.中国疾病预防控制中心关于调整全国传染病自动预警系统(时间模型)预警阈值等事宜的通知.北京:中国疾病预防控制中心,2010. 被引量:1
  • 10中国疾病预防控制中心.全国传染病自动预警(时间模型)试运行工作方案[EB/OL].[2014-01-10].http://www.ehinacde.en/jkzt/tfggwssj/jszl/201402/W020140210368656097520.pdf. 被引量:3

共引文献276

同被引文献56

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部