期刊文献+

Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor 被引量:4

下载PDF
导出
摘要 Owing to the dramatically enhanced charge-mass transport and abundant electrochemically active sites,transition metal compound electrodes are increasingly attractive for achieving high-performance supercapacitors(SCs).Here,we report the fabrication of nickel foam supported three-dimensional(3 D)branched nickel-cobalt phosphides@tri-metal cobalt-nickel-molybdenum phosphides core/shell nanowire heterostructures(denoted as NiCo-P@CoNiMo-P)as high-performance electrode materials for hybrid supercapacitors.The presence of multiple valences of the cations in such NiCo-P@CoNiMo-P enables rich redox reactions and promoted synergy effects.Benefiting from their collective effects,the resulting electrode demonstrates high specific capacity of 1366 C g^(-1) at 2 A g^(-1)(2.03 C cm^(-2) at2 mA cm^(-2))and 922 C g^(-1) at 10 A g^(-1),as well as good cycling stability(retaining~94%of the initial capacity after 6000 cycles at 15 A g^(-1)).A hybrid SC using the NiCo-P@CoNiMo-P as the positive electrode and N-doped rGOs as the negative electrode exhibits a high energy density of 81.4 Wh kg^(-1) at a power density of 1213 W kg^(-1) and a capacity retention of 132%even after 6000 cycles at 10 A g^(-1).Our findings can facilitate the material design for boosting the performance of transition metal compounds based materials for fast energy storage.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期489-496,I0013,共9页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(Grants Nos.52072323 and 51872098) the Leading Project Foundation of Science Department of Fujian Province(Grants No.2018H0034) the“Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University the financial support from the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,&Henan Key Laboratory of High-temperature Structural and Functional Materials,Henan University of Science and Technology(Grants No.HKDNM2019013)。
  • 相关文献

参考文献1

二级参考文献2

共引文献14

同被引文献15

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部