期刊文献+

大规模MIMO系统信道估计的自适应步长梯度算法 被引量:2

Adaptive step size gradient algorithm for channel estimation in large scale MIMO systems
下载PDF
导出
摘要 针对频分双工(frequency division duplex,FDD)模式下大规模多输入多输出(multiple input multiple output,MIMO)系统中的信道估计所需的导频开销过大和信道估计精度不高的问题,提出一种自适应步长梯度信道估计算法。利用大规模MIMO信道低秩特性,将信道估计问题转变为低秩矩阵优化问题,并采用奇异值投影BB步长梯度下降法(singular value projection-barzilar borwein,SVP-BB)恢复信道状态信息。相比奇异值投影梯度法(singular value projection-gradient,SVP-G),奇异值投影牛顿法(singular value projection-Newton,SVP-N)和奇异值混合投影法(singular value projection-hybrid,SVP-H),SVP-BB算法在前五步计算中就能获得较低的归一化均方误差值。仿真结果表明,新算法信道估计精度高且鲁棒性较好。 In the large scale multiple-input multiple output(MIMO) system, to reduce the high pilot overhead and improve the low accuracy of channel estimation in Frequency division duplex(FDD) mode, an adaptive step size gradient channel estimation algorithm is proposed in this paper. By using massive MIMO channel characteristics, the channel estimation problem is transformed into a low-rank matrix optimization problem, and an adaptive BB step gradient descent method with singular value projection-Barzilar Borwein(SVP-BB) is proposed to recover the channel state information. Compared with singular value projection gradient(SVP-G) method, singular value projection Newton(SVP-N) method, and singular value projection hybrid(SVP-H) method, SVP-BB algorithm can obtain a lower normalized mean square error value in the first five steps of calculation. Simulation results show that the proposed algorithm has higher accuracy and better robustness in channel estimation.
作者 翟银浩 张本鑫 Zhai Yinhao;Zhang Benxin(Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《国外电子测量技术》 北大核心 2021年第8期18-22,共5页 Foreign Electronic Measurement Technology
基金 国家自然科学基金(11901137,61967004) 广西自然科学基金(2018GXNSFBA281023)项目资助。
关键词 大规模多输入多输出 频分双工 信道估计 低秩矩阵恢复 large-scale multiple input multiple output frequency division duplex channel estimation low-rank matrix recovery
  • 相关文献

参考文献6

二级参考文献35

共引文献28

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部