摘要
基于著名的Hardy-Littlewood猜想,证明了长为3的素数等差数列出现频率最高的公差是素数连乘.另外,举例说明了这种素数等差数列并不一定是三素数最喜欢的分布形式.
Based on the famous Hardy-Littlewood conjecture,we prove that the most frequent tolerance for a three-length prime arithmetic sequence is a primorial.In addition,we present an example to indicate that this arithmetic sequenceisnot necessarilythe favorite distribution of three prime numbers.
作者
储玉结
CHU Yu-jie(School of Mathematics, Hefei University of Technology, Hefei 230601, China)
出处
《大学数学》
2021年第5期42-46,共5页
College Mathematics