期刊文献+

基于多级残差网络的环境声音分类方法 被引量:4

Environmental Sound Classification Method Based on Multilevel Residual Network
下载PDF
导出
摘要 为了对环境声音进行更好的识别和分类,提出了基于多级残差网络(Multilevel residual network,Mul-EnvResNet)的环境声音分类方法。对声音事件进行时标和基频压扩之后,提取其梅尔频率倒谱系数(Mel-frequency cepstral coefficients,MFCCs),以及它们的差分作为特征参数送入MulEnvResNet对声音事件进行分类。实验数据集采用ESC-50,将Mul-EnvResNet模型与端到端的卷积神经网络(EnvNet)、基于注意力机制的循环神经网络(Attention based convolutional recurrent neural network,ACRNN),以及受限卷积玻尔兹曼机的无监督滤波器组模型(Convolutional restricted Boltzmann machine,ConvRBM)进行对比实验。实验结果表明,Mul-EnvResNet取得了89.32%的最佳分类准确率,相较上述3种模型在分类准确率上分别有18.32%、3.22%、2.82%的提升,相较于其他的声音分类方法也均有明显的优势。 To better identify and classify environmental sound,a multilevel residual network(MulEnvResNet)is proposed for environmental sound classification.After time stretch and pitch shift for sound events,the Mel-frequency cepstral coefficients(MFCCs)and their deltas are extracted as feature parameters and sent into the Mul-EnvResNet to classify sound events.The experimental data set uses ESC-50,Mul-EnvResNet is compared with the end-to-end convolutional neural network(EnvNet),the attention based convolutional recurrent neural network(ACRNN)and the unsupervised filterbank learning using convolutional restricted Boltzmann machine(ConvRBM).The experimental results show that,MulEnvResNet achieves the best accuracy rate of 89.32%in terms of classification accuracy,compared with the above three models,the classification accuracy has been improved by 18.32%,3.22%and 2.82%,respectively,which also has obvious advantages compared with other sound classification methods.
作者 曾金芳 李友明 杨恢先 张钰 胡雅欣 ZENG Jinfang;LI Youming;YANG Huixian;ZHANG Yu;HU Yaxin(School of Physics and Optoelectronics,Xiang Tan University,Xiangtan 411105,China)
出处 《数据采集与处理》 CSCD 北大核心 2021年第5期960-968,共9页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(62071411)资助项目 湖南省自然科学基金(2018JJ3486)资助项目。
关键词 环境声音分类 多级残差网络 时标压扩 基频压扩 environmental sound classification multilevel residual network time stretch baseband stretch
  • 相关文献

参考文献5

二级参考文献3

共引文献26

同被引文献37

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部