期刊文献+

基于高光谱激光雷达的林木病虫害样本分类研究 被引量:5

Research on Classification of Pest and Disease Tree Samples Based on Hyperspectral Lidar
原文传递
导出
摘要 本研究搭建一套91通道、光谱分辨率为5 nm、波长范围为650~1100 nm、生物安全性高的可调谐高光谱激光雷达系统,并完成臭椿、云南松和栾树等林木样本的探测实验。通过实验探测目标回波强度,进而获得目标光谱反射率,最后利用支持向量机分类器对不同种类的健康与染病样本进行分类与识别,臭椿样本的分类精度可以达到96.98%、云南松样本的分类精度可以达到91.21%、栾树样本的分类精度可以达到66.21%。该实验结果具有研究意义和参考价值,为林业病虫害监测提供一种新的发展方向。 In this study,a set of tunable hyperspectral lidar system with 91 channels,spectral resolution of 5 nm,wavelength range of 650--1100 nm,and high biological safety is built,and the detection experiments of forest tree samples such as Ailanthus altissima,Pinus yunnanensis,and Koelreuteria paniculata are completed.The target echo intensity is detected through experiments,and the target spectral reflectance is obtained.Finally,the support vector machine classifier is used to classify and identify different types of healthy and diseased samples.The classification accuracy of Ailanthus altissima samples can reach 96.98%.The classification accuracy of Pinus yunnanensis samples can reach 91.21%,and the classification accuracy of Koelreuteria paniculata samples can reach 66.21%.The experimental results have research significance and reference value,and provide a new development direction for forestry pest monitoring.
作者 卢京 陈玖英 李伟 周梅 胡坚 田汶鑫 李传荣 Lu Jing;Chen Jiuying;Li Wei;Zhou Mei;Hu Jian;Tian Wenxin;Li Chuanrong(Key Laboratory of Quantitative Remote Sensing In formation Technology of CAS,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China;College of Optoelectromics,Chinese Academy of Sciences,Beijing 100049,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第16期511-517,共7页 Laser & Optoelectronics Progress
基金 北京市科技计划(Z181100001018036)。
关键词 遥感 高光谱激光雷达 林木病虫害 支持向量机 参数选取 信号处理 remote sensing hyperspectral lidar tree pests and diseases support vector machine parameter selection signal processing
  • 相关文献

参考文献12

二级参考文献112

共引文献144

同被引文献31

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部