期刊文献+

融合切线段的hRRT狭窄空间路径规划算法

An hRRT Narrow Space Path Planning Algorithm Combined with Tangent Segment
下载PDF
导出
摘要 针对管道与洞穴等狭窄空间下传统hRRT算法难以有效扩展而导致路径无解的问题,提出了一种融合切线段的hRRT狭窄通道路径规划算法。首先凭借hRRT算法偏向目标扩展到障碍物附近,然后利用切线段寻找狭窄空间入口并且保证随机树在狭窄空间中有效扩展,同时删除切线段确定的重复切点促使算法快速跳出局部收敛,如果随机树中存在节点与目标点间无障碍,则路径搜索成功。仿真实验结果表明,与传统hRRT算法和切线算法相比,该算法在普通空间环境与狭窄空间环境中,获得的路径长度相对较短,搜索时间减少了89%。 In order to solve the problem that the traditional hRRT algorithm is difficult to expand effectively in narrow space such as pipeline and cave,a path planning algorithm based on tangent segment is proposed.First the hRRT algorithm is adopted to target expanded near the obstacles,and then use tangents for narrow space entrance and ensure effective extension in random tree in narrow space,at the same time delete tangents of repeated cutting force algorithm quickly jump out of local convergence,if random tree nodes exist in the barrier-free between with the target point,the path search is successful.The experimental results show that compared with the traditional hRRT algorithm and tangent algorithm,the path length obtained by this algorithm is relatively short in the ordinary space environment and the narrow space environment,and the search time is reduced by 89%.
作者 周飞龙 甘屹 ZHOU Fei-long;GAN Yi(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《软件导刊》 2021年第10期154-158,共5页 Software Guide
关键词 移动机器人 路径规划 切线段 hRRT 狭窄通道 mobile robots path planning tangent segment hRRT narrow space
  • 相关文献

参考文献7

二级参考文献41

  • 1樊长虹,陈卫东,席裕庚.未知环境下移动机器人安全路径规划的一种神经网络方法[J].自动化学报,2004,30(6):816-823. 被引量:11
  • 2FILLIAT D, MEYER J A. Map-based navigation in mobile robots : I, a review of localization strategies [ J ]. Cognitive Systems Re- search, 2003, 4(4): 243-282. 被引量:1
  • 3YUN S C, GANAPATHY V, CHONG L O. Impmved genetic algo- rithms based optimum path planning for mobile robot [ C ]//Proe of IEEE International Conference on Control, Automation, Robotics and Vision. [S. 1. ] :IEEE Press, 2010. 被引量:1
  • 4ZHAO Jie, ZHU Lei, LIU Gang-feng, et al. A modified genetic algo- rithm for global path planning of searching robot in mine disasters[ C ]//Proc of IEEE International Conference on Mechatronies and Automation. [ S. 1. ] :IEEE Press, 2009:4936-4940. 被引量:1
  • 5MEI De-qing, DU Xiao-qiang, CHEN Zi-chen. Optimization of dy- namic parameters for a traction-type passenger elevator using a dyna- mic byte coding genetic alg0rithm[J]. Journal of MeChanical Engi- neering Science, 2009, 223(3): 595-605. 被引量:1
  • 6MOHANTA j C, PARHI D R, PATEL S K. Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation [J]. Computers and Electrical Engineering, 2011, 37 (6) : 1058-1070. 被引量:1
  • 7SOLTANI A R, TAWFIK H, GOULERMAS J Y, et al. Path plan- ning in construction sites performance evaluation of the Dijkstra, A * , and GA search algorithms [ J]. Advanced Engineering Infor- ma-tics, 2002, 16(4) : 291-303. 被引量:1
  • 8GEMINDER M, GERKE M. GA-based path planning for mobile robot systems employing an active search algorithm [J ]. Applied Soft Computing, 2003, 3(2): 149-158. 被引量:1
  • 9LOBO F G, GOLDBERG D E, PELKIAN M. Time complexity of ge- netic algorithms on exponentially scaled problems, IlliGAL Report 2000015[ R]. [ S. 1. ] : University of Illinois at Urbana-Champaign, 2000. 被引量:1
  • 10Sheng Junwen, He Gaoqi, Guo Weibin, et al. An improved artificial potential field algorithm for virtual human path planning[C] //Entertainment for Education:Digital Techniques and Systems. Berlin:Springer, 2010:592-601. 被引量:1

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部