期刊文献+

一种矢量瓦片的时序InSAR形变可视化方法 被引量:2

Research on visualization technology of InSAR accumulated settlement data based on vector tiles
原文传递
导出
摘要 针对InSAR地面沉降数据在网络环境下实时可视化渲染速度缓慢、空间分析交互性差、时序演变难度大的问题,提出了适用于地面沉降数据空间分析和时序表达的矢量瓦片制作方法并运用矢量瓦片技术在网页端实现快速可视化:(1)在传统抽稀算法的基础上对矢量瓦片层级间的抽稀算法进行改进;(2)以时间为尺度对累计沉降量数据进行分割存储,便于多尺度、多时序对InSAR数据进行表达和分析;(3)以抚顺市采煤沉陷区时序InSAR累计沉降量数据为实验数据进行验证。实验表明,网页端可快速、高效、灵活地加载矢量瓦片来展示地面沉降的空间分布情况和时空变化特征。 In order to solve the problems of slow rendering speed,poor interaction of spatial analysis and difficulty of time sequence evolution of InSAR land subsidence data in real-time visualization under the network environment,this paper proposed a method of making vector tiles suitable for spatial analysis and time sequence expression of land subsidence data,and used vector tiles technology to realize fast visualization on the web page.Firstly,based on the traditional thinning algorithm,the thinning algorithm between the layers of vector tiles was improved.Secondly,this paper optimized the organization of vector tiles in time Scale was used to segment and store the accumulated settlement data,which was convenient to express and analyze the InSAR Data in multi-scale and multi-time sequence.Finally,this paper took the time series InSAR accumulated settlement data of mining subsidence area in Fushun City as the experimental data to verify which showed that the web page could load quickly,efficiently and flexibly Vector tiles to show the spatial distribution and temporal and spatial characteristics of land subsidence.
作者 杨仕仙 沈涛 许靖 焦孟凯 毛曦 YANG Shixian;SHEN Tao;XU Jing;JIAO Mengkai;MAO Xi(Chinese Academy of Surveying and Mapping,Beijing 100036,China;Shandong University of Science and Technology,Qingdao,Shandong 266510,China;China Geodesy Hi Tech(Beijing)Surveying and Mapping Engineering Technology Co.,Ltd.,Beijing 100039,China)
出处 《测绘科学》 CSCD 北大核心 2021年第9期102-108,共7页 Science of Surveying and Mapping
基金 国家重点研发计划项目(2016YFC0803100)。
关键词 InSAR数据 抽稀算法 分割存储 矢量瓦片 时序演变 InSAR Data thinning algorithm segmented storage vector tiles temporal evolution
  • 相关文献

参考文献15

二级参考文献83

共引文献138

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部