期刊文献+

A prediction-oriented optimal design for visualisation recommender systems

原文传递
导出
摘要 A good visualisation method can greatly enhance human-machine collaboration in target contexts.To aid the optimal selection of visualisations for users,visualisation recommender systems have been developed to provide the right visualisation method to the right person given specific contexts.A visualisation recommender system often relies on a user study to collect data and conduct analysis to provide personalised recommendations.However,a user study without employing an effective experimental design is typically expensive in terms of time and cost.In this work,we propose a prediction-oriented optimal design to determine the user-task allocation in the user study for the recommendation of visualisation methods.The proposed optimal design will not only encourage the learning of the similarity embedded in the recommendation responses(i.e.,users’preference),but also improve the modelling accuracy of the similarities captured by the covariates of contexts(i.e.,task attributes).A simulation study and a real-data case study are used to evaluate the proposed optimal design.
出处 《Statistical Theory and Related Fields》 2021年第2期134-148,共15页 统计理论及其应用(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部