摘要Assume G is a group of order 2^(n),n≥5.Let s_(k)(G)denote the number of subgroups of order 2^(k) of G.We classify finite 2-groups G with s k(G)≤2^(4),where 1≤k≤n.
4ZHANG QinHai & QU HaiPeng School of Mathematics and Computer Sciences, Shanxi Normal University, Linfen 041004, China.On Hua-Tuan's conjecture[J].Science China Mathematics,2009,52(2):389-393. 被引量:6
2ZHANG QinHai & QU HaiPeng School of Mathematics and Computer Sciences, Shanxi Normal University, Linfen 041004, China.On Hua-Tuan's conjecture[J].Science China Mathematics,2009,52(2):389-393. 被引量:6
4Berkovich, Y., Groups of Prime Power Order, Volume 1, Berlin, New York: Walter de Gruyter, 2004. 被引量:1
5Hall, P., A contribution to the theory of groups of prime power order, Proc. London Math. Soc, 1933, 36: 29-95. 被引量:1
6Newman, M.F. and Xu Mingyao, Metacyclic groups of prime-power order(Research announcement), Advances in Mathematics(China) 1988, 17(2): 106-107. 被引量:1
7Redei, L., Das schiefe Product in der Gruppentheorie, Comment. Math. Helvet, 1947, 20: 225-267. 被引量:1
8L. Rédei.Das “schiefe Produkt” in der Gruppentheorie[J]. Commentarii Mathematici Helvetici . 1947 (1) 被引量:1
9A. Kulakoff.über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung inp-Gruppen[J]. Mathematische Annalen . 1931 (1) 被引量:1
10Tuan H F.An Anzahl theorem of Kulakoff’s type for p-groups. Sci Rep Nat Tsing Hua Univ Ser A . 1948 被引量:1
2ZHANG QinHai & QU HaiPeng School of Mathematics and Computer Sciences, Shanxi Normal University, Linfen 041004, China.On Hua-Tuan's conjecture[J].Science China Mathematics,2009,52(2):389-393. 被引量:6