期刊文献+

符号网络中融合聚集系数与符号影响力的链路预测算法

Link prediction algorithm in signed networks based on clustering coefficient and sign influence
下载PDF
导出
摘要 为快速、准确地实现符号社会网络中的链接预测与符号预测双重目标,提出一种融合共同邻居节点的聚集系数与连边符号影响力的链路预测算法.基于结构平衡理论,有效利用节点的度、聚集系数、路径上的中间传输节点、连边符号及其影响力等信息,分别定义了两节点基于一阶共同邻居和二阶共同邻居的相似性,最终得到两节点的总相似性得分,用其绝对值度量两节点建立链接的可能性,通过其符号获得链接的符号预测结果,从而实现符号网络中的链路预测.在6个有代表性的符号网络数据集上进行了实验,以AUC、调整的Precision’、Accuracy等为评价指标,对比了多个符号网络链接预测算法,并进行了可调步长参数的敏感性分析.实验结果表明,所提算法在符号网络链接预测与符号预测两方面均达到了较好的性能,无论是稀疏网络还是负链接预测,准确性均高于其他算法. In order to achieve the dual goals of link prediction and sign prediction in signed social networks quickly and accurately,a link prediction algorithm is proposed based on the clustering coefficient of common neighbor nodes and the influence of the sign of edges.With the structural balance theory,the similarity of the two nodes based on their first-order common neighbors and the second-order common neighbors is defined respectively by using the degree,clustering coefficient,intermediate transitive nodes,and the influence of the sign of the edge,the total similarity score of the two nodes is finally obtained and its absolute value is used to measure the possibility to establish a link of the two nodes,then its sign is the sign prediction result of the link.Accordingly,the link prediction and sign prediction are realized in signed networks.Experiments have been carried out on six representative signed network datasets,with evaluation indicators such as AUC,adjusted precision'and accuracy.The experiment results are compared with several link prediction algorithms in signed networks the sensitivity of adjustable step size parameters is also analyzed.Experimental results show that the proposed algorithm can achieve good performance in both link prediction and sign prediction,and its accuracy is higher than other algorithms for both sparse networks and the prediction of negative links.
作者 刘苗苗 扈庆翠 郭景峰 陈晶 LIU Miao-Miao;HU Qing-Cui;GUO Jing-Feng;CHEN Jing(College of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China;College of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China;The Key Laboratory for Oil Big Data and Intelligent Analysis of Heilongjiang Province,Daqing 163318,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期46-56,共11页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(42002138) 黑龙江省自然科学基金(LH2019F042) 东北石油大学青年基金(2018QNQ-01) 东北石油大学优秀中青年科研创新团队培育基金(KYCXTDQ202101)。
关键词 符号社会网络 链接预测 符号预测 聚集系数 结构平衡理论 相似性 Signed social networks Link prediction Sign prediction Clustering coefficient Structural balance theory Similarity
  • 相关文献

参考文献13

二级参考文献42

  • 1SARUKKAI R R. Link prediction and path analysis u- sing markov chains [ J ]. Computer Networks, 2000,33 ( 1 ) :377 - 386. 被引量:1
  • 2POPESCUL A, UNGAR L H. Statistical relational learning for link prediction [ C ]//IJCAI Workshop on Learning Statistical Models from Relational Data. [S. 1. ] :[s.n. 3,2003:101 -103. 被引量:1
  • 3SHERKAT E, RAHGOZAR M, ASADPOUR M. Structural link prediction based on ant colony approach in social networks[ J]. Physica A: Statistical Mechan- ics and its Applications, 2015 (419) :80- 94. 被引量:1
  • 4LIBEN N D, KLEINBERG J. The link - prediction problem for social networks [ J ]. Journal of the Ameri- can Society for Information Science and Technology, 2007,58(7) :1019 - 1031. 被引量:1
  • 5CLAUSET A, MOORE C, NEWMAN M E J. Hierar- chical structure and the prediction of missing links in networks[J]. Nature, 2008,453(7191 ) :98 - 101. 被引量:1
  • 6YU H, BRAUN P, YILDIRIM M A, et al. High - quality binary protein interaction map of the yeast in- teractome network [ J ]. Science, 2008,322 (5898) : 104 -110. 被引量:1
  • 7GALLAGHER B, TONG H, ELIASSI -RAD T, et al. Using ghost edges for classification in sparsely labeled networks[C]//Proceedings of the lgth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [ S. 1. ] :ACM, 2008:256 -264. 被引量:1
  • 8NEWMAN M E J. Clustering and preferential attach- ment in growing networks [ J ]. Physical Review E, 2001,64(2) :25102 -25109. 被引量:1
  • 9樊秀梅,单志广,张宝贤,陈辉.容迟网络体系结构及其关键技术研究[J].电子学报,2008,36(1):161-170. 被引量:62
  • 10熊永平,孙利民,牛建伟,刘燕.机会网络[J].软件学报,2009,20(1):124-137. 被引量:324

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部