期刊文献+

基于CenterNet的实时行人检测模型 被引量:6

CenterNet-Based Real-Time Pedestrian Detection Model
下载PDF
导出
摘要 针对传统目标检测模型不能同时兼顾检测速度和准确度的问题,提出一种新的PD-CenterNet模型。在CenterNet的基础上对网络结构和损失函数进行改进,在网络结构的上采路径中,设计基于注意力机制的特征融合模块,对低级特征和高级特性进行融合,在损失函数中通过设计α、γ、δ3个影响因子来提高正样本与降低负样本的损失,以平衡正负样本的损失。实验结果表明,相比CenterNet模型,该模型在网络结构和损失函数上的准确度分别提高5.1%、9.81%。 Generally,the speed gain of traditional target detection models comes at the cost of accuracy,and vice versa.To address the problem,a new pedestrian detection model,PD-CenterNet,is proposed based on CenterNet by improving its network structure and loss function.In terms of network structure,a feature fusion module based on attention mechanism is given in the up-sampling path to fuse low-level features and high-level features.In terms of the loss function,three factorsα、γandδare designed to increase the loss of positive samples and reduce the loss of negative samples,balancing the loss of the samples.Experimental results show that compared with the CenterNet model,the proposed model improves the accuracy of network structure by 5.1%and the accuracy of the loss function by 9.81%.
作者 姜建勇 吴云 龙慧云 黄自萌 蓝林 JIANG Jianyong;WU Yun;LONG Huiyun;HUANG Zimeng;LAN Lin(College of Computer Science and Technology,Guizhou University,Guiyang 550025,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第10期276-282,共7页 Computer Engineering
基金 国家自然科学基金(61741124) 贵州省科技计划项目(5781)。
关键词 PD-CenterNet网络 实时检测 行人检测 样本不平衡 损失函数 特征融合 PD-CenterNet real-time detection pedestrian detection sample imbalance loss function feature fusion
  • 相关文献

参考文献5

二级参考文献25

  • 1Geronimo D, Lopez A. Survey of pedestrain detection for ada- vanced driver assistance systems]-J2. IEEE Trans. On Pattern Analysis and Machine Intelligence,2010,32(7): 1239-1258. 被引量:1
  • 2Luo R C,Chen O. Wireless and Pyroelectric Sensory Fusion Sys- tem for Indoor Human/Robot Localization and Monitoring[J]. IEEE/ASME Transactions on Mechatronics, 2013,18 (3) : 845- 853. 被引量:1
  • 3Uddin M-Z, Kim D-H, Kim J T, et al. An Indoor Human Activi- ty Recognition System for Smart Home Using Local Binary Pat-tern Features with Hidden Markov ModelsFJ]. Indoor and Built Environment, 2013,22 (1) 289-298. 被引量:1
  • 4Dalai N, Tfiggs B. Histograms of Oriented Gradients for Hu- manDetection[C]//Proceedings of IEEE Computer Society Con- ference On Computer Vision and Pattern Recognition. IEEE Press, 2005 : 886-893. 被引量:1
  • 5Ding Jian-hao,Wang Yi-gang,Geng Wei-dong. An HOG-CT hu- man detector with histogram-based search[J]. Multimedia Tools and Applications, 2013,63(3) :791-807. 被引量:1
  • 6Dohi K, Negi K,Shibata Y, et al. FPGA Implementation of Hu- man Detection by HOG Features with AdaBoost [J]. IEICE Transactionson Information and Systems, 2013, 96 ( 8 ) : 1676- 1684. 被引量:1
  • 7Cristina C, Daniela M, De Diego M, et al. HoGG: Gabor and HoG-based human detection for surveillance in non-controlled environments[J]. Neurocomputing, 2013,100 : 19-30. 被引量:1
  • 8Walk S. New Features and Insights for Pedestrian Detection [C]// 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. 2010:1030-1037. 被引量:1
  • 9Zeng Cheng-bin, Ma Hua-dong. Robust Head-Shoulder Detec- tion by PCA-Based Multilevel HOG-LBP Detector for People Counting[C]//Proceedings of the 2010 20th International Con- ference on Pattern Recognition. 2010:2069-2072. 被引量:1
  • 10Wojek C, Schiele B. A performance evaluation of single and multi-featrue people detection[C]//Proc. DAGMJ. 2008. 被引量:1

共引文献188

同被引文献23

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部