期刊文献+

堆叠降噪自编码器的影像特征融合变化检测 被引量:1

Image Feature Fusion Change Detection Based on Stacked Denoising Auto-encoder
下载PDF
导出
摘要 提出一种基于堆叠降噪自编码器的影像特征融合变化检测方法。首先在影像分割对象的像素级特征和对象级特征分析、设计与提取基础上,通过像素级特征主成分分析与特征优选处理算法,实现遥感影像多类型特征融合并构建分割对象的多维特征向量;其次利用堆叠降噪自编码器的高维复杂数据处理能力,实现遥感影像多维融合特征的变化检测。实验结果表明,该方法与传统的像素级或对象级特征变化检测方法相比,具有更高的变化检测精度。 An image feature fusion change detection method based on stacked denoising auto-encoder is proposed in the paper. Firstly, pixel level features of segmented images are optimized and selected by principal component analysis, and they are combined with object level features to construct multi-dimensional fusion features. Then, the stacked denoising auto-encoder is used to realize the change detection for its good performance in high-dimensional complex data processing. The experimental results show that the proposed method has higher change detection accuracy than the traditional pixel level or object level feature change detection method.
作者 史文洁 戴晨光 赵莹 王岩 王志坚 SHI Wenjie;DAI Chenguang;ZHAO Ying;WANG Yan;WANG Zhijian(Information Engineering University,Zhengzhou 450001,China)
机构地区 信息工程大学
出处 《测绘科学技术学报》 CSCD 北大核心 2021年第4期391-397,共7页 Journal of Geomatics Science and Technology
基金 国防科工局高分专项(42-Y30B04-9001-19121)。
关键词 堆叠降噪自编码器 特征融合 变化检测 遥感影像 深度学习 stacked denoising auto-encoder feature fusion change detection remote sensing image deep learning
  • 相关文献

参考文献17

二级参考文献81

  • 1张炳然.军用机场结构[J].兵器知识,2013,0(2):25-30. 被引量:1
  • 2喻红艳,李利军.彩色航空影像中的建筑物阴影提取[J].科学技术与工程,2007,7(7):1389-1393. 被引量:12
  • 3Fung F,LeDrew E.Application of Principle Components Analysis to Change Detection[J].Photogrammetric Engineering & Remote Sensing,1987,53(12):1649-1658. 被引量:1
  • 4Carlotto M J.Detection and Analysis of Change in Remotely Sensed Imagert with Application to Wide Area Surveillance[J].IEEE Trans.on Image Processing,1997,6(1):189-202. 被引量:1
  • 5Peter J D.Digital Change Detection Techniques:Civilian and Military Application[Z].Taylar & Francis Ltd.,1999. 被引量:1
  • 6Ediriwickrema J, Khorram S. Hierarchical maximum-likeli- hood classification for improved accuracies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997 (35):810-816. 被引量:1
  • 7Jensen R J, Lulla D K. Introductory digital image process- ing: A remote sensing perspective[C]. Upper Saddle River, N J: Prentice-Hall, 2005. 被引量:1
  • 8Bishop C M. Neural networks for pattern recognition[M]. Oxford: Clarendon Press, 1995. 被引量:1
  • 9Benediktsson J A, Swain P H, Ersoy O K. Neural network approaches versus statistical methods in classification of multisource remote-sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990(28):550-552. 被引量:1
  • 10Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995. 被引量:1

共引文献139

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部