期刊文献+

基于执行者过程树的双维度遗传过程挖掘方法 被引量:1

Double-dimensional genetic process mining method based on executor process tree
下载PDF
导出
摘要 事件日志记录数量众多的事件,不仅包含与活动控制流相关的内容,还记录有关活动执行者的信息,即组织维度信息。控制流发现算法从事件日志中自动构建控制流过程模型,组织维度发现算法则构建社交网络模型。如果能合并两种维度,在同一个模型中进行展示,则能够提供更完整的过程组织视图,有助于更准确地对过程以及组织进行分析。因此,提出一种基于执行者过程树的双维度遗传过程挖掘方法(BdSm)。一方面,使用Inductive Miner预挖掘以优化遗传挖掘算法初始种群,达到生成高质量的控制流模型的目的;另一方面提出日志中活动之间距离的度量方法,能有效度量活动在组织层面的相似度,同时使用执行者信息扩充控制流过程模型,基于执行者过程树生成双维度的过程模型。通过模拟日志以及4个公开事件日志集对所提方法进行验证,结果表明,在控制流维度,所提方法能够生成较高综合质量的过程模型,同时借助组织维度信息,还能够发现典型的工作模式及组织结构。 There are a large number of events exist in event logs that contain activities of both order and originators,also named organizational dimension information.Control flow discovery algorithms can automatically construct the control flow process model from the event log,and the organization discovery algorithm builds a social network.If two dimensions can be combined and displayed in a model,a more complete process organization view can be provided,which is helpful for processing and organization analysis.Therefore,a Double-Dimensional Genetic Process Mining Method based on Executor Process Tree(BdSm)was proposed.Inductive miner was used to prepare a high-quality initial population for genetic mining algorithm,which could generate high-quality control flow dimension process models.A measurement of distance between activities based on the similarity of executor was proposed.The process model of control flow was extended by organizational dimension information,and a double-dimensional process model based on the executor process tree was generated.The simulation logs and four open event logs were used to verify BdSm,and the results showed that BdSm could generate a process model of highly comprehensive quality in the control flow dimension.Meanwhile,typically working models and organizational structures could be found through organizational dimension information.
作者 汤雅惠 李彤 朱锐 南峰涛 付会林 TANG Yahui;LI Tong;ZHU Rui;NAN Fengtao;FU Huilin(School of Information, Yunnan University, Kunming 650500, China;School of Software, Yunnan University, Kunming 650091, China;School of Big Data, Yunnan Agricultural University, Kunming 650201, China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2021年第9期2680-2690,共11页 Computer Integrated Manufacturing Systems
基金 云南省自然科学基金基础研究面上资助项目(2019FB135) 国家自然科学基金资助项目(61662085) 云南大学数据驱动的软件工程省科技创新团队资助项目(2017HC012) 云南大学“东陆中青年骨干教师”培养计划资助项目 云南大学研究生科研创新基金资助项目(2020z71)。
关键词 过程挖掘 遗传挖掘算法 控制流维度 组织维度 执行者过程树 process mining genetic mining algorithm control flow dimension organizational dimension executor process tree
  • 相关文献

参考文献2

二级参考文献33

  • 1COOK J E, WOLF A L. Discovering models of software pro- cesses from event based data[J]. ACM Transactions on Soft- ware Engineering and Methodology, 1998,7(3) : 215-249. 被引量:1
  • 2AGRAWAL R, GUNOPULOS D, LEYMANN F. Mining pr- ocess models from workflow logs [ M]. Berlin, Germany: Springer-Verlag, 1998. 被引量:1
  • 3DATTA A. Automating the discovery of as-is business proce- ss models..probabilistic and algorithmic approaches[J]. Infor- mation Systems Research,1998,9(3)..275-301. 被引量:1
  • 4BIERMANN A W, FELDMAN J A. On the synthesis of fi- nite-state machines from samples of their behavior[J]. IEEE Transactions on Computers, 1972,100 (6) : 592-597. 被引量:1
  • 5VAN DER AALST W M P. Process mining:discovery, con- formance and enhancement of business processes[M]. Berlin, Germany: Springer-Verlag, 2011. 被引量:1
  • 6VAN DER AALST W M P, WEIJTERS A J M M, MA- RUSTER L. Workflow mining: discovering process models from event logs[J]. IEEE Transactions on Knowledge and Da- ta Engineering, 2004,16 (9) : 1128-1142. 被引量:1
  • 7VAN DONGEN B F, ALVES DE MEDEIROS A K, WEN Li- jie. Process mining overview and outlook of petri net discovery atgorithms[M]//Transactions on Petri Nets and Other Models of Concurrency 11. Berlin, Germany Springer-Verlag, 2009: 225-242. 被引量:1
  • 8DE MEDEIROS A K A, WEIJTERS A J M M, VAN DER AALST W M P. Genetic process mining[C]//Proceedings of the 26th International Conference on Applications and Theory of Petri Nets. Berlin, Germany:Springer-Verlag,2015. 被引量:1
  • 9WEN Lijie, VAN DER AALST W M P, WANQ Jianmin, et al. Mining process models with non-free-choice constructs [J]. Data Mining and Knowledge Discovery, 2007, 15 (2):145-180. 被引量:1
  • 10DE MEDEIROS A K A, WEIJTERS A J M M, VAN DER AALST W M P. Genetic process mining: an experimental e- valuation[J]. Data Mining and Knowledge Discovery, 2007, 14(2) :245-304. 被引量:1

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部