期刊文献+

Balanced multiple weighted linear discriminant analysis and its application to visual process monitoring

下载PDF
导出
摘要 Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear discriminant analysis(BMWLDA).Then,we combine BMWLDA with self-organizing map(SOM)for visual monitoring of industrial operation processes.BMWLDA can extract the discriminative feature vectors from the original industrial data and maximally separate industrial operation states in the space spanned by these discriminative feature vectors.When the discriminative feature vectors are used as the input to SOM,the training result of SOM can differentiate industrial operation states clearly.This function improves the performance of visual monitoring.Continuous stirred tank reactor is used to verify that the class separation performance of BMWLDA is more effective than that of traditional linear discriminant analysis,approximate pairwise accuracy criterion,max–min distance analysis,maximum margin criterion,and local Fisher discriminant analysis.In addition,the method that combines BMWLDA with SOM can effectively perform visual process monitoring in real time.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期128-137,共10页 中国化学工程学报(英文版)
基金 support of National Key Research and Development Program of China(2020YFA0908303) National Natural Science Foundation of China(21878081).
  • 相关文献

参考文献2

二级参考文献4

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部