期刊文献+

Global Attracting Sets of Neutral Stochastic Functional Differential Equations Driven by Poisson Jumps

原文传递
导出
摘要 By means of the Banach fixed point principle,we establish some sufficient conditions ensuring the existence of the global attracting sets and the exponential decay in the mean square of mild solutions for a class of neutral stochastic functional differential equations by Poisson jumps.An example is presented to illustrate the effectiveness of the obtained result.
出处 《Journal of Partial Differential Equations》 CSCD 2021年第2期103-115,共13页 偏微分方程(英文版)
  • 相关文献

二级参考文献29

  • 1Cheban D, Mammana C. Invariant manifolds, global attractors and almost periodic solutions of nonau- tonomous difference equations. Nonlinear Anal, 2004, 56:465 -484. 被引量:1
  • 2Xu D Y. Asymptotic behavior of nonlinear difference equations with delays. Comput Math Appl, 2001,42: 393- 398. 被引量:1
  • 3Xu D Y. Invariant and attracting sets of Volterra difference equations with delays. Comput Math Appl, 2003, 45:1311- 1317. 被引量:1
  • 4Bernfeld S R, Corduneanu C, Ignatyev A O. On the stability of invariant sets of functional differential equations. Nonlinear Anal, 2003, 55:641-656. 被引量:1
  • 5Kolmanovskii V B, Nosov V R. Stability of Functional Differential Equations. Orlando, FL: Academic Press, 1986. 被引量:1
  • 6Liao X X, Luo Q, Zeng Z G. Positive invariant and global exponential attractive sets of neural networks with time-varying delays. Neurocomputing, 2008, 71:513- 518. 被引量:1
  • 7Xu D Y, Zhao H Y. Invariant set and attractivity of nonlinear differential equations with delays. Appl Math Lett, 2002, 15 : 321-325. 被引量:1
  • 8Zhao H Y. Invariant set and attractor of nonautonomous functional differential systems. J Math Anal Appl, 2003, 282:437- 443. 被引量:1
  • 9Wang L S, Xu D Y. Asymptotic behavior of a class of reaction-diffusion equations with delays. J Math Anal Appl, 2003, 281:439-453. 被引量:1
  • 10Duan J Q, Lu K N, Schmalfuβ B. Invariant manifolds for stochastic partial differential equations. Ann Probab, 2003, 31:2109-2135. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部