期刊文献+

破裂颅内动脉瘤血管内栓塞术后患者远期预后的影响因素分析及列线图构建:单中心研究 被引量:9

A nomogram for factors influencing long-term prognosis of patients with ruptured intracranial aneurysm after endovascular embolization : a single center study
下载PDF
导出
摘要 目的探讨青海地区破裂颅内动脉瘤患者血管内栓塞术后远期预后的影响因素,并构建列线图预测模型。方法回顾性连续纳入2012年4月至2019年4月于青海大学附属医院行血管内栓塞治疗的破裂颅内动脉瘤患者371例,均经头部CT和(或)DSA确诊为动脉瘤性蛛网膜下腔出血。371例患者均生于青海省,在本地生活时间>1年,按7∶3比例,将其随机分配为建模组(270例)和验证组(101例)。对所有患者进行血管内栓塞术后24个月的临床随访,格拉斯哥预后量表(GOS)评分4~5分为预后良好,1~3分为预后不良。对建模组预后良好(192例)和预后不良(78例)患者进行人口学特征及临床资料的比较,人口学特征包括年龄、性别、藏族、高海拔(海拔≥2500 m)等;临床资料包括高血压病、2型糖尿病、吸烟史、血红蛋白水平升高(血红蛋白>175 g/L)、颅内压升高(脑脊液压力>180 mmH 2O)、Hunt-Hess量表评分4~5分、改良Fisher量表评分、院内术后并发症(缺血、出血性并发症)等。以建模组患者预后不良为因变量,单因素分析中P<0.1的参数为自变量,进行多因素Logistic回归分析筛选风险变量,并构建列线图预测模型。应用Bootstrap法对预测模型进行内部验证,通过一致性指数确定模型的区分度,一致性指数越接近1.0表示模型的区分度越好。应用决策曲线分析法判断预测模型的临床实用性,模型曲线与所有患者接受血管内栓塞治疗净获益曲线的临界概率范围越大,说明临床实用性越好。绘制校准曲线,采用Hosmer-Lemeshow检验判断预测模型的校准度,P>0.05表示校准度较好。结果(1)建模组与验证组患者人口学特征及临床资料的差异均无统计学意义(均P>0.05)。(2)270例建模组预后良好和预后不良患者分别为192、78例。预后不良患者居住高海拔地区、藏族、颅内压增高、Hunt-Hess量表评分4~5分、血红蛋白升高、院内术后并发症比例均高于 Objective To investigate risk factors affecting long-term clinical outcomes in ruptured intracranial aneurysm(RIA)patients after interventional embolization in Qinghai Province and establish nomogram.Methods From April 2012 to April 2019,371 RIA patients who underwent endovascular embolization in Qinghai University Affiliated Hospital were consecutively and retrospectively enrolled.All patients were diagnosed as aneurysmal subarachnoid hemorrhage by head CT and/or DSA.The total of 371 patients were all born in Qinghai Province and had lived locally for more than 1 year.They were randomly divided into a training group(270 cases)and a validation group(101 cases)at a ratio of 7∶3.For clinical follow-up at 24 months after interventional embolization,the Glasgow Prognostic Scale(GOS)score 4-5 was defined as good prognosis and 1-3 as poor prognosis.Demographic characteristics and clinical data were compared between patients with good prognosis(192 cases)and poor prognosis(78 cases)in the training group.Demographic features included age,gender,Tibetan,high altitude(altitude≥2500 m),etc.Clinical data included hypertension,type 2 diabetes,smoking history,elevated hemoglobin level(hemoglobin>175 g/L),increased intracranial pressure(cerebrospinal fluid pressure>180 mmH 2O),Hunt-Hess scale score 4-5,modified Fisher scale score,postoperative complications(ischemic or hemorrhagic)in hospital,etc.The poor prognosis of patients was dependent variable in the training group,and parameters of P<0.1 in the univariate analysis were independent variables.The nomogram prediction model was constructed,according to risk factors selected by multivariate Logistic regression analysis.Bootstrap method was applied to verify the prediction model internally,and the model differentiation was determined by consistency index.The closer the consistency index was to 1.0,the better the model differentiation was.The decision curve analysis(DCA)was applied to judge the clinical practicability of the prediction model.The greater the critical probabi
作者 戴娆 马存凯 李玉彪 雷振武 郭应兴 Dai Rao;Ma Cunkai;Li Yubiao;Lei Zhenwu;Guo Yingxing(Department of Interventional Therapy,Qinghai University Affiliated Hospital,Xi Ning 810001,China)
出处 《中国脑血管病杂志》 CAS CSCD 北大核心 2021年第9期590-598,共9页 Chinese Journal of Cerebrovascular Diseases
关键词 颅内动脉瘤 蛛网膜下腔出血 栓塞 治疗性 高海拔 远期预后 列线图 Intracranial aneurysm Subarachnoid hemorrhage Embolization,therapeutic High altitude Long-term outcome Nomogram
  • 相关文献

参考文献17

二级参考文献107

共引文献586

同被引文献119

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部