期刊文献+

三阶偏微分方程的时空间断Galerkin谱方法 被引量:1

SPACE-TIME DISCONTINUOUS GALERKIN SPECTRAL METHOD FOR THIRD-ORDER PARTIAL DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 本文提出了三阶偏微分方程的时空间断Galerkin谱方法.该方法在空间方向上采用局部间断Galerkin谱方法,即在每个子区域上,该格式按Legendre-Galerkin谱方法形成,子区域交界面处的跳跃项利用数值流量进行处理.在时间方向上采用多区域Legendre-tau谱方法.文中将该全离散格式分别应用到线性与非线性方程中,并分别给出了数值算例.理论分析部分给出了三阶线性偏微分方程在全离散格式下的收敛性分析. In this paper,space-time discontinuous Galerkin spectral method for third-order partial differential equations is proposed.The local discontinuous Galerkin spectral method is used in the spatial direction,in which numerical schemes in each subdomain are generated using the Legendre-Galerkin method,and those jump terms crossing boundaries of different cells are dealt with using numerical flux.Meanwhile,the Legendre-tau spectral method is used in the time direction.The fully discrete scheme is applied to linear and nonlinear equations,respectively.Examples are given to illustrate their numerical schemes.As theoretical analysis,convergence of the fully discrete scheme for the third-order linear partial differential equations is analyzed.
作者 薛未 吴华 Xue Wei;Wu Hua(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《数值计算与计算机应用》 2021年第3期247-262,共16页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(11571225)资助。
关键词 三阶偏微分方程 局部间断Galerkin谱方法 Legendre-tau谱方法 时空谱方法 third-order partial differential equations local discontinuous Galerkin spectral method Legendre-tau spectral method space-time spectral method
  • 相关文献

参考文献4

二级参考文献14

  • 1Boyd J P. Fourier and Chebyshev spectral methods [M]. 2nd ed. New York: Dover: 2001. 被引量:1
  • 2Canuto C, Hussazni M Y, Quarteroni A, et al. Spectral methods in fluid dynamics [M]. Berlin: Springer-Verlag, 1988. 被引量:1
  • 3Gottlieb D, Orszag S A. Numerical analysis of spectral methods: theory and application [M]. Philadelphia: SIAM-CBMS, 1977. 被引量:1
  • 4Li J, Ma H P, Sun W W. Error analysis for solving the Korteweg-de Vries equation by a Legendre-Petrov-Galerkin method [J]. Numer. Methods Partitial Differential Equations, 2000, 16: 513-534. 被引量:1
  • 5Ma H P, Sun W W. A Legendre-Petrov-Galerkin and Chebyshev collocation method for third- order differential equations [J]. SIAM J. Numer. Anal., 2000, 38: 1425-1438. 被引量:1
  • 6Ma H P, Sun W W: Optimal error estimates of the Legendre-Petrrov-Galerkin method for the Korteweg-de Vries equation [J]. SIAM J. Numer. Anal., 2001, 39: 1380-1394. 被引量:1
  • 7Shen J. A new dual-Petrov-Galerkin method for third and higher odd-order differential equa- tions:application to the KdV equation [J]. SIAM J. Numer. Anal., 2003, 41: 1595-1619. 被引量:1
  • 8Funaro D, Gottlieb D. A new methocl of imposing boundary conditions in pseudospectral approximations of hyperbolic equations [J]. Math. Comput., 1988, 51: 599-613. 被引量:1
  • 9Heinrichs W. Domain decomposition for fourth-order problems [J]. SIAM J. Numer. Anal., 1993, 33: 435-453. 被引量:1
  • 10Pavoni D. Single and multidomain Chebyshev collocation methods for the Korteweg-de Vries equation [J]. Calcola, 1988, 25: 311-346. 被引量:1

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部