期刊文献+

直觉模糊联盟合作博弈团结值简化求解方法及性质

Simplified Calculation Methods and Properties of the Solidarity Values of Cooperative Games with Intuitionistic Fuzzy Coalitions
原文传递
导出
摘要 在经典合作博弈中,参与者联盟信息是完全确定的(即1表示完全参加而0表示完全不参加)。然而,由于实际情况下联盟信息具有不确定性,联盟信息具有模糊性。本文利用直觉模糊集理论方法,对合作博弈进行直觉模糊拓展,提出基于直觉模糊联盟合作博弈团结值。然后,研究了该类合作博弈解简化算法和满足有效性、可加性、平均贡献等价性等重要性质和唯一性。最后,通过算例说明该团结值求解方法的合理性和适用性。 In the classic cooperative game, the players’ alliance is expressed exactly(i.e. 1 means join totally or 0 means not at all). However, due to the uncertainty of the information in the actual situation, the alliance information is fuzzy. Using intuitionistic fuzzy theory and methods, we study the intuitionistic fuzzy extension to the classical cooperative games, and propose the solidarity values of the cooperative games with intuitionistic fuzzy coalitions. Then the computing methods of these values are simplified, and the important properties of these values such as effectiveness, additivity and equal average gains are proved. Finally, a numerical example is given to illustrate the application and benefits of these methods.
作者 杨靛青 王艳君 俞裕兰 黄淑婵 方怡彬 YANG Dian-qing;WANG Yan-jun;YU Yu-lan;HUANG Shu-chan;FANG Yi-bin(College of Economics and Management,Fuzhou University,Fuzhou 350116,China;Department of International Trade,Fujian Business University,Fuzhou 350002,China)
出处 《模糊系统与数学》 北大核心 2021年第4期93-101,共9页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(71572040) 福建省自然科学基金面上资助项目(2018J01810) 福建省社会科学规划基金资助项目(FJ2018B076,FJ2019B139) 博士后科学基金资助项目(2017M612118)。
关键词 合作博弈 直觉模糊联盟 团结值 Cooperative Game Intuitionistic Fuzzy Coalition Solidarity Value
  • 相关文献

参考文献2

二级参考文献9

  • 1Nowak A S, Radzik T. A solidarity value for n-person transferable utility games[J]. International Journal of Game Theory, 1994, 23: 43-48. 被引量:1
  • 2Myerson R B . Graphs and cooperation in games[J]. Mathematics of Operations Research, 1977, 2: 225-229. 被引量:1
  • 3Vazquez Brage M, Garcia Jurado I, Carreras F. The Owen value applied to games with graph- restricted communication[J]. Games and Economic Behavior, 1996,12: 42-53. 被引量:1
  • 4van den Brink R, van der Laan G, Vasil'ev V. Component efficient solutions in line-graph games with applications[J]. Economic Theory, 2007, 33: 349-364. 被引量:1
  • 5Khmelnitskaya A B. Values for rooted-tree and sink-tree digraph games and sharing a river[J]. Theory and Decision, 2010, 69: 657-669. 被引量:1
  • 6Li L, Li X, The covering values for acyclic digraph games[J]. International Journal of Game Theory, 2010. 被引量:1
  • 7Ambec S, Sprumont Y. Sharing a river[J]. Economic Theory, 2002, 107: 453-462. 被引量:1
  • 8Aumann R J, Dreze J H. Cooperative games with coalition structure[J]. International Journal of Game Theory, 1974, 3: 217-237. 被引量:1
  • 9Owen G. Values of graph-restricted games [J]. SIAM J Algebraic Discrete Methods, 1986, 7: 210-220. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部