期刊文献+

基于LTE信号外辐射源雷达的同频干扰抑制算法 被引量:9

A Co-channel Interference Suppression Algorithm for LTE-based Passive Radar
下载PDF
导出
摘要 传统基于LTE信号外辐射源雷达的同频干扰抑制算法往往采用对同频干扰进行对消或抑制的策略,其优点是适用范围广,能应用在多种机会外辐射源雷达中,但是鲜有结合LTE信号本身特征进行同频干扰抑制的研究。针对于上述情况,提出一种基于信源分离和LTE信号特征相结合的同频干扰抑制方法。采用m-Capon算法对未知信源数量的入射信号进行波达角估计,获得接收信号的混合矩阵,通过最小二乘法分离信号。将分离的源信号进行并行互模糊处理,利用LTE主基站信号、同频信号以及目标信号在距离-多普勒域上的特征差异进行判决,识别目标信号。仿真结果表明:所提算法相对于传统基于LTE信号外辐射源雷达的同频干扰抑制算法具有更优的抑制效果,并且避免了传统的杂波对消过程;同时因采用并行处理,减少了多次计算互模糊相关导致的额外时间开销。 The traditional co-channel interference suppression algorithms of LTE(long-term evolution)-based passive radar adopt the strategy of cancelling or suppressing the co-channel interference.They are widely used and can be applied to various illuminators of opportunity external radiation source radar.However,there are few studies on co-channel interference suppression by utilizing the characteristics of LTE signal.A co-channel interference suppression algorithm,which combines the sources separation technique and characteristics of LTE signal,is proposed.The proposed algorithm is used to estimate the direction of arrival of incident signals,obtain the mixing matrix,and separate the signals based on the least square method.Then the parallel cross-ambiguity correlation of the separated source signals is executed.The differences among the LTE main base station signal,the co-channel interference and the target echo in the distance-Doppler domain are used to identify the target.Simulated results show that the proposed algorithm has better suppression performance compared to the traditional co-channel interference suppression algorithms,and avoids the traditional clutter cancellation process.Meanwhile,the extra time assumption caused by multiple calculations of cross-ambiguity correlation can be reduced by means of parallel operation.
作者 邵晓浪 胡泰洋 肖泽龙 卫永平 王华 SHAO Xiaolang;HU Taiyang;XIAO Zelong;WEI Yongping;WANG Hua(School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China;Huaihai Industry Group Co.,Ltd., Changzhi 046012, Shanxi, China;Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076, China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2021年第8期1670-1679,共10页 Acta Armamentarii
基金 军委科技委技术领域基金项目(2020年)。
关键词 外辐射源雷达 LTE信号 同频干扰抑制 波达角估计 互模糊相关 passive radar long term evolution signal co-channel interference suppression estimation of the direction of arrival cross-ambiguity correlation
  • 相关文献

参考文献9

二级参考文献58

  • 1王俊,保铮,张守宏.无源探测与跟踪雷达系统技术及其发展[J].雷达科学与技术,2004,2(3):129-135. 被引量:62
  • 2LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization [J]. Letters to Nature, 1999(401): 788-791. 被引量:1
  • 3EGGERT J, KORNER E. Sparse coding and NMF[ C]// Proceedings of the International Joint Conference on Neural. Washington, DC: IEEE Computer Society, 2004:2529 -2535. 被引量:1
  • 4LI HUA LIANG, ADALI T, WANG WEI, et al. Non-negative matrix factorization with orthogonality constraints for chemical Agent detection in Raman spectra[ C]//IEEE Workshop on Machine Learning for Signal Processing. Washington, DC: IEEE Computer Socie- ty, 2005:253-258. 被引量:1
  • 5ZDUNEK R, CICHOCKI A. Blind image separation using nonnegatire matrix factorization with Gibbs smoothing[ C]//Neural Information Processing, LNCS 4895. Berlin: Springer, 2008:519-528. 被引量:1
  • 6CHO Y C, CHOI S. Normegative features of spectro-temporal sounds for classification [J]. Pattern Recognition Letters, 2005, 26(9): 1327 -1336. 被引量:1
  • 7SAJDA P, DU S, PARRA L. Recovery of constituent spectra using non-negative matrix factorization [ C ]// Proceedings of Wavelets: Applications in Signal and Image Processing. San Diego: [ s. n. ], 2003:321-331. 被引量:1
  • 8GUILLAMET D, VITRIA J, SCHIELE B. Introducing a weighted non-negative matrix factorization for image classification [J]. Pattern Recognition Letters, 2003, 24(14): 2447-2454. 被引量:1
  • 9CICHOCKI A, ZDUNEK R, AMARI S I. Csiszar's divergences for non-negative matrix factorization: Family of new algorithms[ C]// Independent Component Analysis and Blind Signal Separation, LNCS3889. Berlin: Springer, 2006:32-39. 被引量:1
  • 10BOFILL P, ZIBULEVSKY M. Underdetermined source separation sparse representation[J]. Signal Processing, 2001(81): 2353 -2362. 被引量:1

共引文献65

同被引文献84

引证文献9

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部