期刊文献+

An extended Galerkin analysis for elliptic problems

原文传递
导出
摘要 A general analysis framework is presented in this paper for many different types of finite element methods(including various discontinuous Galerkin methods).For the second-order elliptic equation-div(α▽u)=f,this framework employs four different discretization variables,u_(h),p_(h),u_(h)and p_(h),where u_(h)and p_(h)are for approximation of u and p=-α▽u inside each element,and u_(h)and p_(h)are for approximation of the residual of u and p·n on the boundary of each element.The resulting 4-field discretization is proved to satisfy two types of inf-sup conditions that are uniform with respect to all discretization and penalization parameters.As a result,many existing finite element and discontinuous Galerkin methods can be analyzed using this general framework by making appropriate choices of discretization spaces and penalization parameters.
出处 《Science China Mathematics》 SCIE CSCD 2021年第9期2141-2158,共18页 中国科学:数学(英文版)
基金 supported by Center for Computational Mathematics and Applications,The Pennsylvania State University supported by National Natural Science Foundation of China(Grant No.11901016) the startup grant from Peking University supported by National Science Foundation of USA(Grant No.DMS-1522615)。
  • 相关文献

参考文献2

二级参考文献25

  • 1Brenner S, Scott R. The Mathematical Theory of Finite Element Mathods. New York: Springer-Verlag, 1994. 被引量:1
  • 2Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978. 被引量:1
  • 3Wang J, Ye X. A weak Galerkin finite element method for second-order elliptic problems. J Comput Appl Math, 2013, 241: 103-115. 被引量:1
  • 4Wang J, Ye X. A weak Galerkin mixed finite element method for second-order elliptic problems. Math Comp, 2014, 83: 2101-2126. 被引量:1
  • 5Wang J, Ye X. A weak Galerkin finite element method for the Stokes equations. Adv Comput Math, in press, 2015. 被引量:1
  • 6Mu L, Wang J, Ye X, et al. A weak Galerkin finite element method for the Maxwell equations. J Sci Comput, doi: 10.1007/s10915-014-9964-4, 2014. 被引量:1
  • 7Mu L, Wang J, Ye X. Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer Methods Partial Differential Equations, 2014, 30: 1003-1029. 被引量:1
  • 8Wang C, Wang J. An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput Math Appl, 2014, 68: 2314-2330. 被引量:1
  • 9Mu L, Wang J, Ye X. Weak Galerkin finite element methods on polytopal meshes. Int J Numer Anal Model, 2015, 12: 31-53. 被引量:1
  • 10Mu L, Wang J, Wang Y, et al. A computational study of the weak Galerkin method for second order elliptic quations. Numer Algorithms, 2013, 63: 753-777. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部