期刊文献+

Uncovering the Online Social Structure Surrounding COVID-19 被引量:3

原文传递
导出
摘要 How do people talk about COVID-19 online?To address this question,we offer an unsupervised framework that allows us to examine Twitter framings of the pandemic.Our approach employs a network-based exploration of social media data to identify,categorize,and understand communication patterns about the novel coronavirus on Twitter.The simplest structure that emerges from our analysis is the distinction between the internal/personal,external/global,and generic threat framings of the pandemic.This structure replicates in different Twitter samples and is validated using the variation of information measure,reflecting the significance and stability of our findings.Such an exploratory study is useful for understanding the contours of the natural,non-random structure in this online space.We contend that this understanding of structure is necessary to address a host of causal,supervised,and related questions downstream.
出处 《Journal of Social Computing》 2021年第2期157-165,共9页 社会计算(英文)
  • 相关文献

同被引文献25

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部