期刊文献+

一种适合于非线性高维数据的谱聚类算法 被引量:2

A SPECTRAL CLUSTERING ALGORITHM FOR NONLINEAR HIGH DIMENSIONAL DATA
下载PDF
导出
摘要 谱聚类能识别非线性数据,且优于传统聚类。谱聚类中度量相似性的高斯核函数尺度参数σ和聚类个数k对聚类效果影响较大,但需要人工判断。用向量之间夹角余弦代替σ并且通过特征值的跳跃性确定聚类个数,对于非线性高维数据,提出一种自适应谱聚类算法,将数据通过显式构造映射到随机特征空间,在随机特征空间中实现聚类。实验结果表明,在UCI数据上该算法与传统算法相比效果更好。 Spectral clustering can identify nonlinear data,and it is better than traditional clustering.The Gaussian kernel function scale parametersσand the number of clusters k that measure the similarity in spectral clustering have a great influence on the clustering effect,and face the problem of human determination.This paper used the angle cosine between the vectors to replace theσand determined the number of clusters k by jumping the eigenvalues.In order to solve the nonlinear high-dimensional data clustering,an adaptive spectral clustering algorithm was proposed to map the data to the stochastic feature space through explicit construction,and the clustering was realized in the stochastic feature space.The experimental results show that,compared with the traditional algorithm on UCI data,this algorithm has better effect.
作者 王鸿菲 杜洪波 林凯迪 姚云飞 朱立军 Wang Hongfei;Du Hongbo;Lin Kaidi;Yao Yunfei;Zhu Lijun(School of Science,Shenyang University of Technology,Shenyang 110870,Liaoning,China;School of Computer Science and Technology,Tianjin University,Tianjin 300050,China;School of Information and Computing Science,Northern University for Nationalities,Yinchuan 750021,Ningxia,China)
出处 《计算机应用与软件》 北大核心 2021年第9期268-272,292,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61362033)。
关键词 谱聚类 非线性高维 自适应 随机特征空间 Spectral clustering Non-linear high-dimensional Adaptive Random feature space
  • 相关文献

参考文献10

二级参考文献33

  • 1贺玲,吴玲达,蔡益朝.高维空间中数据的相似性度量[J].数学的实践与认识,2006,36(9):189-194. 被引量:20
  • 2胡庆林,叶念渝,朱明富.数据挖掘中聚类算法的综述[J].计算机与数字工程,2007,35(2):17-20. 被引量:36
  • 3[1]Jackson J E. A User's Guide To Principal Components.John Wiley & Sons,1991 被引量:1
  • 4[2]Jain A K, Dubes R C. Algorithms for Cluster Data. Prentice Hall,1988 被引量:1
  • 5[3]Agrawal R,Srikant R. Fast Algorithms for Mining Association rules.Proc.of the 20th VLDB Conference, 1994 被引量:1
  • 6[4]Kirkpatrick S, Gelatt C D,Vecchi H M P. Optimization by Simulated Annealing. Science, 1983,220(4598):671-680 被引量:1
  • 7[5]Hua K A,Lang S D,Lee W K. A Decomposition-based Simulated Ann -ealing Technique for Data Clustering. SIGMOD, 1994:117-128 被引量:1
  • 8[6]Cheeseman P, Stutz J. Baysian Classification (Autoclass):Theory and Result. U.M.Fayyad,G.Piatetsky-Shapiro, P.Smith,and R.thurusamy,editors, Advances in Knowledge Discovery and Data Mining, 1996 被引量:1
  • 9[7]Frakes W B,Stemming Algorithms.In W.B.Frakes and R.Baeza-Yate,Editors,Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992 被引量:1
  • 10杨燕,靳蕃,KAMEL Mohamed.聚类有效性评价综述[J].计算机应用研究,2008,25(6):1630-1632. 被引量:117

共引文献235

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部