期刊文献+

基于经验模态分解算法的高铁沉降数据处理模型研究

The Research on High Speed rail Settlement Data Processing Model Based on Empirical Mode Decomposition Algorithm
下载PDF
导出
摘要 针对高铁沉降观测存在观测噪声等情况,利用经验模态分解算法对银西高铁银吴段沉降观测数据进行分解处理,利用小波去噪算法完成分解后高频本征模态函数的去噪实验。实验结果表明,相对于传统小波去噪算法,基于EMD分解算法的小波去噪实验具有更好的信噪比和误差均方根,EMD-WD去噪算法在SNR方面提高2.481db,在RMSE方面提高0.027。 In view of the observation noise existing in the settlement observation of high-speed railway,the empirical mode decomposition algorithm is used to decompose the settlement observation data of yinwu section of Yinxi high-speed railway,and the wavelet denoising algorithm is used to complete the denoising experiment of high-frequency eigenmode function after decomposition.The experimental results show that compared with the traditional wavelet de-noising algorithm,the wavelet de-noising experiment based on EMD decomposition algorithm has better signal-to-noise ratio and root mean square error.EMD-WD de-noising algorithm improves SNR by 2.481db and RMSE by 0.027.
作者 申彦民 SHEN Yanmin(China Construction Communications Construction Group Co.,Ltd.,Beijing,100166 China)
出处 《科技创新导报》 2021年第14期146-149,共4页 Science and Technology Innovation Herald
关键词 高铁变形监测 经验模态分解算法 小波降噪 信噪比 Deformation monitoring EMD Wavelet SNR
  • 相关文献

参考文献6

二级参考文献60

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部