期刊文献+

自适应粒子群算法在污水处理过程智能控制优化中的应用仿真研究 被引量:4

Application Simulation Research of Adaptive Particle Swarm Optimization in Intelligent Control Optimization of Wastewater Treatment Process
下载PDF
导出
摘要 基于污水处理国际基准仿真平台,采用自适应粒子群算法进行污水处理过程智能控制优化仿真实验研究。首先,详细介绍了国际基准仿真平台BSM1的结构和原理。在此基础上,基于BSM1的仿真工况,以出水水质达标且能耗最低为目标,构造污水处理过程的优化目标函数。然后,基于时变参数策略,构造自适应粒子群算法对污水处理过程中的控制参数进行优化。最后,基于BSM1污水处理仿真流程,对自适应粒子群算法的控制优化效果进行了验证和分析。相关实验研究及结果表明,基于自适应粒子群算法的智能控制优化策略能够在保证水质达标的前提下有效降低能耗,对污水处理过程的实际控制优化具有一定工程指导意义。 Based on the international benchmark simulation model of wastewater treatment simulation platform,the adaptive particle swarm optimization(APSO)was used to carry out the intelligent control optimization simulation experiment research of wastewater treatment process(WWTP)in this paper.Firstly,the structure and principle of the international benchmark simulation model BSM1 were introduced in detail.Based on the simulation conditions of BSM1,with the goal of effluent water quality reaching the standard and the minimum energy consumption,the optimization objective function of WWTP was constructed.Then,based on the time-varying parameter strategy,APSO was constructed to optimize the control parameters in WWTP.Finally,based on BSM1 wastewater treatment simulation process,the control optimization effect of APSO was verified and analyzed.Relevant experimental research and results showed that the intelligent control optimization strategy based on APSO could effectively reduce energy consumption under the premise of ensuring that the water quality met the standard,and had certain engineering guiding significance for the control optimization of the actual WWTP.
作者 王爱其 陈科 WANG Aiqi;CHEN Ke(Zhejiang Jingxing Paper Joint Stock Co.,Ltd.,Jiaxing,Zhejiang Province,314214)
出处 《中国造纸》 CAS 北大核心 2021年第8期70-74,共5页 China Pulp & Paper
关键词 污水处理过程 粒子群算法 智能控制策略 BSM1 wastewater treatment process particle swarm optimization intelligent control strategy BSM1
  • 相关文献

参考文献5

二级参考文献43

  • 1J B Copp,,U Jeppson,C Rosen.Towards an ASM1-ADM1state variable interface for plant-wide wastewater treatment modeling[].Proceeding of the WEETEC.2003 被引量:1
  • 2P Vanrolleghem,,S Gillot.Robustness and economic measures as control benchmark perform criteria[].Water Science and Technology.2002 被引量:1
  • 3L Rieger,,J Alex,S Winkler.Process in sensor technolo-gy-process in process controlPart玉:Sensor property inves-tigation and classification[].Water Science and Technology.2003 被引量:1
  • 4M N Pons.Benchmark1[]..2007 被引量:1
  • 5I Tak佗cs,G Patry,D Nolasco.A dynamic model of the clarifi-cation thickening process[].Water Research.1991 被引量:1
  • 6M Henze,,C G Jr,W Gujer.Activated sludge model No1[].IAWQ Scientific and Technical Report No.1986 被引量:1
  • 7J Copp.The COST simulation benchmark:description and simulator manual[]..2001 被引量:1
  • 8M N Pons,,U Jeppsson.The COST benchmark simulation mod-el-current state and future perspective[].Control Engineering.2004 被引量:1
  • 9D J Batstone,,J Keller,I Angelidaki.Anaerobic Digestion Model No1[].IWA Scientific and Technical Reports No.2002 被引量:1
  • 10Flores X, Bonmati A, Poch M, Roda I, Jimenez L, Banares-Alcantara R. Multicriteria evaluation tools to support the conceptual design of activated sludge systems[J]. Water Science & Technology, 2007, 56:85-94. 被引量:1

共引文献22

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部