期刊文献+

基于传感器融合的同步定位与建图系统 被引量:3

Synchronous positioning and mapping system based on sensor fusion
下载PDF
导出
摘要 针对在同步定位与地图构建系统中,使用单一的视觉或激光传感器时,容易出现采集的图像特征信息不准确或丢失,从而导致定位失败的问题,提出一种基于传感器融合的同步定位与地图构建方法。通过将惯性传感器获取的惯性里程计、深度相机获取的视觉里程计与伺服电机编码器获取的轮式里程计融合,共同构成系统状态参数及系统协方差矩阵,并使用扩展卡尔曼滤波方法构建多传感器融合的同步定位与地图构建系统。实验结果表明:与传统的同步定位与地图构建系统相比,该方法能够提高定位精度,改善移动平台的运动性能。 In the synchronous positioning and map building system,when a single vision or laser sensor is used,the collected image feature information is easy to be inaccurate or lost,resulting in positioning failure.A synchronous positioning and map building method was proposed based on sensor fusion.By fusing the inertial odometer obtained by an inertial sensor,the visual odometer obtained by the depth camera and the wheel odometer obtained by servo motor encoder,the system state parameters,and system covariance matrix were formed together,and the extended Kalman filter method was used to construct the multi-sensor fusion synchronous positioning and map construction system.The experimental results show that compared with the traditional synchronous positioning and map building system,this method improves the positioning accuracy and the motion performance of the mobile platform.
作者 邓张 王吉芳 黄荣锐 马飞 DENG Zhang;WANG Jifang;HUANG Rongrui;MA Fei(Mechanical Electrical Engineering School,Beijing Information Science&Technology University,Beijing 100192,China)
出处 《北京信息科技大学学报(自然科学版)》 2021年第4期88-94,共7页 Journal of Beijing Information Science and Technology University
基金 促进高校内涵发展重点培育项目(5212010925) 北京信息科技大学研究生科技创新项目(5121911047)。
关键词 传感器融合 姿态解算 扩展卡尔曼滤波 同步定位与地图构建 sensor fusion attitude solution extended Kalman filter simultaneous positioning and mapping
  • 相关文献

参考文献5

二级参考文献20

  • 1胡春旭,熊枭,任慰,何顶新.基于嵌入式系统的室内移动机器人定位与导航[J].华中科技大学学报(自然科学版),2013,41(S1):254-257. 被引量:34
  • 2R. García-García,M. A. Sotelo,I. Parra,D. Fernández,J. E. Naranjo,M. Gavilán.3D Visual Odometry for Road Vehicles[J].Journal of Intelligent and Robotic Systems.2008(1) 被引量:1
  • 3Cordelia Schmid,Roger Mohr,Christian Bauckhage.Evaluation of Interest Point Detectors[J].International Journal of Computer Vision.2000(2) 被引量:1
  • 4Agrawal, M,Konolige, K.Real-time Localization in Outdoor Environments Using Stereo Vision and Inexpensive GPS[].th Int Conf on Pattern Recognition.2006 被引量:1
  • 5Alonso, I.P,Llorca, D.F,Sotelo, M.A,Bergasa, L.M,de Toro, P.R,Nuevo, J.,Ocana, M,Garrido, M.A.G.Combination of feature extraction methods for SVM pedestrian detection[].IEEE Trans on Intell Transport Syst.2007 被引量:1
  • 6Fischler, M.A,Bolles, R.C.Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[].Commun ACM.1981 被引量:1
  • 7García, R,Sotelo, M,Parra, I,Fernández, D,Gavilán, M,álvarez, S,Naranjo, J.E.Visual odometry for road vehicles[].J Intell Rob Syst.2007 被引量:1
  • 8Hagnelius,A.Visual Odometry[]..2005 被引量:1
  • 9Nister, D,Naroditsky, O,Beren, J.Visual Odometry[].Proc IEEE Conf on Computer Vision and Pattern Recognition.2004 被引量:1
  • 10CORDELIA S,ROGER M,et al.Evaluation of Interest Point Detectors[].Int’ I JComputer Vision.2000 被引量:1

共引文献53

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部