摘要
针对主从式上肢外骨骼康复机器人的机械臂活动空间设计和双臂干涉问题,基于Denavit-Hartenberg参数建模法,以人体上肢活动范围为边界条件,建立主从臂各关节在统一固定坐标系下的运动学模型;以齐次坐标运动学模型为基础,确定基于上肢运动极限位置约束的主从双臂间的安全活动空间,并利用蒙特卡罗算法进行仿真验证;根据主从双臂活动范围的安全距离与上肢活动规律,给出主、从双臂各五自由度康复机器人的设计及从臂跟随主臂意图运动的训练方法。计算机仿真试验和实验室样机现场试验结果表明,机器人活动空间满足康复训练上肢活动方式和活动范围等人体工学要求,解决了因主从臂干涉而造成的二次伤害等影响康复效果的问题。
Aiming at the problem of manipulator space design and double arms interference of master-slave mode upper limb exoskeleton rehabilitation robots,a kinematics model of each joint of master-slave arms under a unified fixed coordinate system was established based on Denavit-Hartenberg parameter modeling method and taking motion range of human upper limbs as boundary conditions.Using a homogeneous coordinate kinematics model,a safe movement space between master-slave arms based on upper limb motion limit position constraints was determined,and simulation results were verified by using Monte Carlo method.According to safe distance of motion range of master-slave arms and movement law of upper limbs,a rehabilitation robot with five degrees of freedom in each of master-slave arms was designed,and a training method of the slave arm following intentional movement of the master arm was presented.The results of computer simulation test and laboratory prototype field test show that the robot movement space can meet ergonomic requirements of rehabilitation training such as movement mode and range of upper limbs,and can solve secondary injury caused by master-slave arms interference and other problems affecting rehabilitation effect.
作者
鲁守银
张蔚然
赵洪华
LU Shouyin;ZHANG Weiran;ZHAO Honghua(School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,Shandong,China;Integrated Electronic Systems Lab Co.,Ltd.,Jinan 250100,Shandong,China;School of Mechanical Engineering,University of Jinan,Jinan 250022,Shandong,China)
出处
《济南大学学报(自然科学版)》
CAS
北大核心
2021年第5期494-501,共8页
Journal of University of Jinan(Science and Technology)
基金
山东省重点研发计划(重大科技创新工程)项目(2019JZZY010435)。
关键词
上肢康复机器人
主从式结构
运动学建模
外骨骼机器人
upper limb rehabilitation robot
master-slave mode structure
kinematics modeling
exoskeleton robot