期刊文献+

基于卷积神经网络的蜡染纹样分类 被引量:2

Classification of Indigo Batik Pattern Based on Convolutional Neural Networks
下载PDF
导出
摘要 为了提高蜡染纹样的分类准确率,提出一种改进的VGGNet分类模型,将最后池化层的输出进行全局平均池化后直接与分类神经元进行全连接。采用数据增强技术扩充训练集样本数量,提高模型的泛化能力,使用迁移学习方法将预先训练好的VGGNet参数作为初始化参数,提高模型训练的效率。实验结果表明,该方法能够有效提高蜡染纹样的分类准确率。 To improve the classification accuracy of indigo batik pattern,a classification model based on the improved convolution neural network model of VGGNet is proposed,the outputs of the final pooling layer are pooled by global average and connected directly with the classification neurons. Data enhancement technology is used to expand the number of training samples and improve the generalization ability of the model,using transfer learning method,the pre trained VGGNet parameters are used as initialization parameters to improve the efficiency of model training. Experimental results show that this method can effectively improve the classification accuracy of indigo batik pattern.
作者 周长敏 佘佐明 吴安丽 ZHOU Changmin;SHE Zuoming;WU Anli(School of Big Data Engineering,Kaili University,Kaili 556011;School of Economics and Management,Kaili University,Kaili 556011;School of Art and Design,K aili University,Kaili 556011)
出处 《现代计算机》 2021年第22期117-121,共5页 Modern Computer
基金 贵州省教育厅2019年青年科技人才成长项目(黔教合KY字[2019]194)。
关键词 蜡染纹样分类 卷积神经网络 迁移学习 VGGNet Classification of Indigo Batik Pattern Convolutional Neural Networks Transfer Learning VGGNet
  • 相关文献

参考文献6

二级参考文献104

  • 1盛冠忠,李龙.关于山羊绒鉴别有关问题的探讨[J].毛纺科技,2007,35(12):52-55. 被引量:11
  • 2LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 被引量:1
  • 3HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. 被引量:1
  • 4LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616. 被引量:1
  • 5HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525. 被引量:1
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114. 被引量:1
  • 7GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587. 被引量:1
  • 8LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440. 被引量:1
  • 9SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf. 被引量:1
  • 10SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8. 被引量:1

共引文献611

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部