期刊文献+

结合重要节点信任传播的社会化推荐算法 被引量:3

Social Recommendation Combined with Important Nodes Trust Propagation
下载PDF
导出
摘要 融合社交信息的推荐算法有效缓解了推荐算法中的数据稀疏性问题和冷启动问题,近年来受到极大的关注。但社交信息依然存在数据稀疏性问题,而且社交网络提供的二值数据无法衡量不同用户间的信任程度。针对这些问题,利用重启随机游走算法获取社交网络中的重要节点。提出重要节点信任传播算法建立重要节点和其他用户节点之间的信任关系,同时利用节点的结构信息进一步量化用户间的信任权重,以得到更精确的推荐结果。在三个公开数据集上的实验表明,结合重要节点信任传播的社会化推荐算法(INTP-Rec)丰富了社交信息,有效地提高了推荐算法的准确率和召回率。 The recommendation algorithm based on social information effectively alleviates the data sparsity and cold start problems in the recommendation algorithm,which has attracted great attention in recent years.However,social information still has the problem of data sparsity,and the binary data provided by social networks can not measure the degree of trust between different users.Therefore,first of all,it uses random walk with restart to obtain important nodes in social network.Then,the important nodes trust propagation algorithm is proposed to establish the trust relationship between indirect user nodes and important nodes.At the same time,the trust weight between users is further quantified by using the structural information of nodes to get more accurate recommendation results.Experiments on three open datasets show that the social recommendation combined with important nodes trust propagation enriches social information and effectively improves the accuracy and recall rate of the recommendation algorithm.
作者 顾军华 陈博 王锐 张素琪 GU Junhua;CHEN Bo;WANG Rui;ZHANG Suqi(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China;Hebei Province Key Laboratory of Big Data Computing,Tianjin 300401,China;School of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第17期190-195,共6页 Computer Engineering and Applications
基金 国家自然科学基金(61802282) 天津市企业科技特派员项目(19JCTPJC54200) 河北省创新能力提升计划(199676146H)。
关键词 推荐算法 社交信息 重要节点 信任传播 重启随机游走算法 recommendation algorithm social information important nodes trust propagation Random Walk with Restart(RWR)
  • 相关文献

参考文献2

二级参考文献103

  • 1Wang Z, Sun LF, Zhu WW, Yang SQ, Li HZ, Wu DP. Joint social and content recommendation for user-generated videos in online social network. IEEE Trans. on Multimedia, 2013,15(3):698-710. [doi: 10.1109/TMM.212.2237022]. 被引量:1
  • 2Quijano-Sanchez L, Recio-Garcia J, Diaz-Agudo B. Social factors in group recommender systems. ACM Trans. on Intelligent Systems and Technology, 2013,4(1):Article No.8. [doi: 10.1145/2414425/2414433]. 被引量:1
  • 3Social Network Analysis. A brief introduction. 2007. http://orgnet.Com/sna.html. 被引量:1
  • 4Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks. In: Proc. of the IJCAI. AAAI Press, 2011. 2644-2649. [doi: IO.5591/978-1-57735-516-8/IJCAI11-440]. 被引量:1
  • 5Jamali M, Ester M. A matrix factorization technique with trust propagation tbr recommendation in social networks. In: t'roe, ot tlae ReeSys 2010. New York: ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736]. 被引量:1
  • 6Moghaddam S, Jamali M, Ester M. ETF: Extended tensor factorization model for personalizing prediction of review helpfulness. In: Proc. of the ACM WSDM 2012. New York: ACM Press, 2012. 163-172. Idol: 10.1145/2124295.2124316]. 被引量:1
  • 7Hoens TR, Blanton M. A private and reliable recommendation system for social networks. In: Proc. of the IEEE SocialCom. Washington: IEEE Computer Society, 2011. 816-825. Idol: 10.1109/SocialCom.2010.124]. 被引量:1
  • 8Berjani B, Strufe T. A recommendation system for spots in location-based online social networks. In: Proc. of the SNS 2011. New York: ACM Press, 201 I. 1-4. [doi: 10.I 145/1989656.1989660]. 被引量:1
  • 9Kim HK, Ryu YU. Cho Y. Customer-Driven content recommendation over a network of customers. IEEE Trans. on Systems, Man and Cybernetics, Part A, 2012,42(1):48-56. 被引量:1
  • 10Purushotham S, Liu Y, Kuo CC. Collaborative topic regression with matrix factorization for recommendation systems. In: Proc. of the ICML. 2012. 759-766. 被引量:1

共引文献163

同被引文献53

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部